ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1d GIF version

Theorem mpteq1d 4090
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
mpteq1d (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 mpteq1 4089 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cmpt 4066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-opab 4067  df-mpt 4068
This theorem is referenced by:  fmptapd  5709  offval  6092
  Copyright terms: Public domain W3C validator