ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1d GIF version

Theorem mpteq1d 4134
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
mpteq1d (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 mpteq1 4133 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cmpt 4110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-opab 4111  df-mpt 4112
This theorem is referenced by:  mptimass  5041  fmptapd  5785  offval  6176  swrd00g  11116  swrdlend  11125  swrd0g  11127  qusex  13207  mulgnn0gsum  13514  gsumfzconst  13727  gsumfzsnfd  13731  gsumfzfsumlem0  14398  gsumfzfsumlemm  14399
  Copyright terms: Public domain W3C validator