ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptapd Unicode version

Theorem fmptapd 5775
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Hypotheses
Ref Expression
fmptapd.0a  |-  ( ph  ->  A  e.  _V )
fmptapd.0b  |-  ( ph  ->  B  e.  _V )
fmptapd.1  |-  ( ph  ->  ( R  u.  { A } )  =  S )
fmptapd.2  |-  ( (
ph  /\  x  =  A )  ->  C  =  B )
Assertion
Ref Expression
fmptapd  |-  ( ph  ->  ( ( x  e.  R  |->  C )  u. 
{ <. A ,  B >. } )  =  ( x  e.  S  |->  C ) )
Distinct variable groups:    x, A    x, B    x, R    x, S    ph, x
Allowed substitution hint:    C( x)

Proof of Theorem fmptapd
StepHypRef Expression
1 fmptapd.0a . . . . 5  |-  ( ph  ->  A  e.  _V )
2 fmptapd.0b . . . . 5  |-  ( ph  ->  B  e.  _V )
3 fmptsn 5773 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
5 elsni 3651 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
6 fmptapd.2 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  C  =  B )
75, 6sylan2 286 . . . . 5  |-  ( (
ph  /\  x  e.  { A } )  ->  C  =  B )
87mpteq2dva 4134 . . . 4  |-  ( ph  ->  ( x  e.  { A }  |->  C )  =  ( x  e. 
{ A }  |->  B ) )
94, 8eqtr4d 2241 . . 3  |-  ( ph  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  C ) )
109uneq2d 3327 . 2  |-  ( ph  ->  ( ( x  e.  R  |->  C )  u. 
{ <. A ,  B >. } )  =  ( ( x  e.  R  |->  C )  u.  (
x  e.  { A }  |->  C ) ) )
11 mptun 5407 . . 3  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e.  { A }  |->  C ) )
1211a1i 9 . 2  |-  ( ph  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e. 
{ A }  |->  C ) ) )
13 fmptapd.1 . . 3  |-  ( ph  ->  ( R  u.  { A } )  =  S )
1413mpteq1d 4129 . 2  |-  ( ph  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C ) )
1510, 12, 143eqtr2d 2244 1  |-  ( ph  ->  ( ( x  e.  R  |->  C )  u. 
{ <. A ,  B >. } )  =  ( x  e.  S  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164   {csn 3633   <.cop 3636    |-> cmpt 4105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
This theorem is referenced by:  fmptpr  5776
  Copyright terms: Public domain W3C validator