ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptapd Unicode version

Theorem fmptapd 5798
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Hypotheses
Ref Expression
fmptapd.0a  |-  ( ph  ->  A  e.  _V )
fmptapd.0b  |-  ( ph  ->  B  e.  _V )
fmptapd.1  |-  ( ph  ->  ( R  u.  { A } )  =  S )
fmptapd.2  |-  ( (
ph  /\  x  =  A )  ->  C  =  B )
Assertion
Ref Expression
fmptapd  |-  ( ph  ->  ( ( x  e.  R  |->  C )  u. 
{ <. A ,  B >. } )  =  ( x  e.  S  |->  C ) )
Distinct variable groups:    x, A    x, B    x, R    x, S    ph, x
Allowed substitution hint:    C( x)

Proof of Theorem fmptapd
StepHypRef Expression
1 fmptapd.0a . . . . 5  |-  ( ph  ->  A  e.  _V )
2 fmptapd.0b . . . . 5  |-  ( ph  ->  B  e.  _V )
3 fmptsn 5796 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
5 elsni 3661 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
6 fmptapd.2 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  C  =  B )
75, 6sylan2 286 . . . . 5  |-  ( (
ph  /\  x  e.  { A } )  ->  C  =  B )
87mpteq2dva 4150 . . . 4  |-  ( ph  ->  ( x  e.  { A }  |->  C )  =  ( x  e. 
{ A }  |->  B ) )
94, 8eqtr4d 2243 . . 3  |-  ( ph  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  C ) )
109uneq2d 3335 . 2  |-  ( ph  ->  ( ( x  e.  R  |->  C )  u. 
{ <. A ,  B >. } )  =  ( ( x  e.  R  |->  C )  u.  (
x  e.  { A }  |->  C ) ) )
11 mptun 5427 . . 3  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e.  { A }  |->  C ) )
1211a1i 9 . 2  |-  ( ph  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e. 
{ A }  |->  C ) ) )
13 fmptapd.1 . . 3  |-  ( ph  ->  ( R  u.  { A } )  =  S )
1413mpteq1d 4145 . 2  |-  ( ph  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C ) )
1510, 12, 143eqtr2d 2246 1  |-  ( ph  ->  ( ( x  e.  R  |->  C )  u. 
{ <. A ,  B >. } )  =  ( x  e.  S  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172   {csn 3643   <.cop 3646    |-> cmpt 4121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  fmptpr  5799
  Copyright terms: Public domain W3C validator