| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | Unicode version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. 2
| |
| 2 | mpteq2dva.1 |
. 2
| |
| 3 | 1, 2 | mpteq2da 4132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: mpteq2dv 4134 fmptapd 5774 offval 6165 offval2 6173 caofinvl 6183 caofcom 6188 caofdig 6191 freceq1 6477 freceq2 6478 pw2f1odclem 6930 mapxpen 6944 xpmapenlem 6945 nnnninf2 7228 nninfwlpoimlemginf 7277 fser0const 10678 sumeq1 11637 sumeq2 11641 prodeq2 11839 prod1dc 11868 restid2 13051 pwsplusgval 13098 pwsmulrval 13099 qusin 13129 prdssgrpd 13218 prdsidlem 13250 prdsmndd 13251 grpinvpropdg 13378 prdsinvlem 13411 pwsinvg 13415 pwssub 13416 mulgrhm2 14343 psrlinv 14417 cnmpt1t 14728 cnmpt12 14730 fsumcncntop 15010 expcn 15012 divccncfap 15033 cdivcncfap 15047 expcncf 15052 divcncfap 15057 maxcncf 15058 mincncf 15059 dvidlemap 15134 dvidrelem 15135 dvidsslem 15136 dvcnp2cntop 15142 dvaddxxbr 15144 dvmulxxbr 15145 dvimulf 15149 dvcoapbr 15150 dvcjbr 15151 dvcj 15152 dvfre 15153 dvexp 15154 dvexp2 15155 dvrecap 15156 dvmptcmulcn 15164 dvmptnegcn 15165 dvmptsubcn 15166 dvmptfsum 15168 dvef 15170 ply1termlem 15185 plypow 15187 plyconst 15188 plyaddlem1 15190 plymullem1 15191 plycolemc 15201 plycjlemc 15203 dvply1 15208 dvply2g 15209 lgsval4lem 15459 lgsneg 15472 lgsmod 15474 lgseisenlem3 15520 lgseisenlem4 15521 2omap 15894 |
| Copyright terms: Public domain | W3C validator |