| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | Unicode version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | mpteq2dva.1 |
. 2
| |
| 3 | 1, 2 | mpteq2da 4149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-opab 4122 df-mpt 4123 |
| This theorem is referenced by: mpteq2dv 4151 fmptapd 5798 offval 6189 offval2 6197 caofinvl 6207 caofcom 6212 caofdig 6215 freceq1 6501 freceq2 6502 pw2f1odclem 6956 mapxpen 6970 xpmapenlem 6971 nnnninf2 7255 nninfwlpoimlemginf 7304 fser0const 10717 swrdswrd 11196 sumeq1 11781 sumeq2 11785 prodeq2 11983 prod1dc 12012 restid2 13195 pwsplusgval 13242 pwsmulrval 13243 qusin 13273 prdssgrpd 13362 prdsidlem 13394 prdsmndd 13395 grpinvpropdg 13522 prdsinvlem 13555 pwsinvg 13559 pwssub 13560 mulgrhm2 14487 psrlinv 14561 cnmpt1t 14872 cnmpt12 14874 fsumcncntop 15154 expcn 15156 divccncfap 15177 cdivcncfap 15191 expcncf 15196 divcncfap 15201 maxcncf 15202 mincncf 15203 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 dvimulf 15293 dvcoapbr 15294 dvcjbr 15295 dvcj 15296 dvfre 15297 dvexp 15298 dvexp2 15299 dvrecap 15300 dvmptcmulcn 15308 dvmptnegcn 15309 dvmptsubcn 15310 dvmptfsum 15312 dvef 15314 ply1termlem 15329 plypow 15331 plyconst 15332 plyaddlem1 15334 plymullem1 15335 plycolemc 15345 plycjlemc 15347 dvply1 15352 dvply2g 15353 lgsval4lem 15603 lgsneg 15616 lgsmod 15618 lgseisenlem3 15664 lgseisenlem4 15665 2omap 16132 pw1map 16134 |
| Copyright terms: Public domain | W3C validator |