![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq2dva | Unicode version |
Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
mpteq2dva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpteq2dva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
2 | mpteq2dva.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpteq2da 4119 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-opab 4092 df-mpt 4093 |
This theorem is referenced by: mpteq2dv 4121 fmptapd 5750 offval 6140 offval2 6148 caofinvl 6157 caofcom 6158 caofdig 6161 freceq1 6447 freceq2 6448 pw2f1odclem 6892 mapxpen 6906 xpmapenlem 6907 nnnninf2 7188 nninfwlpoimlemginf 7237 fser0const 10609 sumeq1 11501 sumeq2 11505 prodeq2 11703 prod1dc 11732 restid2 12862 qusin 12912 grpinvpropdg 13150 mulgrhm2 14109 cnmpt1t 14464 cnmpt12 14466 fsumcncntop 14746 expcn 14748 divccncfap 14769 cdivcncfap 14783 expcncf 14788 divcncfap 14793 maxcncf 14794 mincncf 14795 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvcnp2cntop 14878 dvaddxxbr 14880 dvmulxxbr 14881 dvimulf 14885 dvcoapbr 14886 dvcjbr 14887 dvcj 14888 dvfre 14889 dvexp 14890 dvexp2 14891 dvrecap 14892 dvmptcmulcn 14900 dvmptnegcn 14901 dvmptsubcn 14902 dvmptfsum 14904 dvef 14906 ply1termlem 14921 plypow 14923 plyconst 14924 plyaddlem1 14926 plymullem1 14927 plycolemc 14936 plycjlemc 14938 dvply1 14943 lgsval4lem 15168 lgsneg 15181 lgsmod 15183 lgseisenlem3 15229 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |