| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | Unicode version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 |
|
| Ref | Expression |
|---|---|
| mpteq2dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | mpteq2dva.1 |
. 2
| |
| 3 | 1, 2 | mpteq2da 4123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: mpteq2dv 4125 fmptapd 5756 offval 6147 offval2 6155 caofinvl 6165 caofcom 6170 caofdig 6173 freceq1 6459 freceq2 6460 pw2f1odclem 6904 mapxpen 6918 xpmapenlem 6919 nnnninf2 7202 nninfwlpoimlemginf 7251 fser0const 10646 sumeq1 11539 sumeq2 11543 prodeq2 11741 prod1dc 11770 restid2 12952 pwsplusgval 12999 pwsmulrval 13000 qusin 13030 prdssgrpd 13119 prdsidlem 13151 prdsmndd 13152 grpinvpropdg 13279 prdsinvlem 13312 pwsinvg 13316 pwssub 13317 mulgrhm2 14244 psrlinv 14318 cnmpt1t 14629 cnmpt12 14631 fsumcncntop 14911 expcn 14913 divccncfap 14934 cdivcncfap 14948 expcncf 14953 divcncfap 14958 maxcncf 14959 mincncf 14960 dvidlemap 15035 dvidrelem 15036 dvidsslem 15037 dvcnp2cntop 15043 dvaddxxbr 15045 dvmulxxbr 15046 dvimulf 15050 dvcoapbr 15051 dvcjbr 15052 dvcj 15053 dvfre 15054 dvexp 15055 dvexp2 15056 dvrecap 15057 dvmptcmulcn 15065 dvmptnegcn 15066 dvmptsubcn 15067 dvmptfsum 15069 dvef 15071 ply1termlem 15086 plypow 15088 plyconst 15089 plyaddlem1 15091 plymullem1 15092 plycolemc 15102 plycjlemc 15104 dvply1 15109 dvply2g 15110 lgsval4lem 15360 lgsneg 15373 lgsmod 15375 lgseisenlem3 15421 lgseisenlem4 15422 2omap 15750 |
| Copyright terms: Public domain | W3C validator |