ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2da GIF version

Theorem mpteq2da 4137
Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq2da.1 𝑥𝜑
mpteq2da.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2da (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))

Proof of Theorem mpteq2da
StepHypRef Expression
1 eqid 2206 . . 3 𝐴 = 𝐴
21ax-gen 1473 . 2 𝑥 𝐴 = 𝐴
3 mpteq2da.1 . . 3 𝑥𝜑
4 mpteq2da.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
54ex 115 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
63, 5ralrimi 2578 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
7 mpteq12f 4128 . 2 ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
82, 6, 7sylancr 414 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  wnf 1484  wcel 2177  wral 2485  cmpt 4109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-opab 4110  df-mpt 4111
This theorem is referenced by:  mpteq2dva  4138  prodeq1f  11907  prodeq2  11912  gsumfzsnfd  13725
  Copyright terms: Public domain W3C validator