ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2da GIF version

Theorem mpteq2da 4024
Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq2da.1 𝑥𝜑
mpteq2da.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2da (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))

Proof of Theorem mpteq2da
StepHypRef Expression
1 eqid 2140 . . 3 𝐴 = 𝐴
21ax-gen 1426 . 2 𝑥 𝐴 = 𝐴
3 mpteq2da.1 . . 3 𝑥𝜑
4 mpteq2da.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
54ex 114 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
63, 5ralrimi 2506 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
7 mpteq12f 4015 . 2 ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
82, 6, 7sylancr 411 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1330   = wceq 1332  wnf 1437  wcel 1481  wral 2417  cmpt 3996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-ral 2422  df-opab 3997  df-mpt 3998
This theorem is referenced by:  mpteq2dva  4025  prodeq1f  11352  prodeq2  11357
  Copyright terms: Public domain W3C validator