Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodeq1f | Unicode version |
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1f.1 | |
prodeq1f.2 |
Ref | Expression |
---|---|
prodeq1f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3170 | . . . . . . 7 | |
2 | eleq2 2234 | . . . . . . . . 9 | |
3 | 2 | dcbid 833 | . . . . . . . 8 DECID DECID |
4 | 3 | ralbidv 2470 | . . . . . . 7 DECID DECID |
5 | 1, 4 | anbi12d 470 | . . . . . 6 DECID DECID |
6 | prodeq1f.1 | . . . . . . . . . . . . . 14 | |
7 | prodeq1f.2 | . . . . . . . . . . . . . 14 | |
8 | 6, 7 | nfeq 2320 | . . . . . . . . . . . . 13 |
9 | eleq2 2234 | . . . . . . . . . . . . . . 15 | |
10 | 9 | ifbid 3546 | . . . . . . . . . . . . . 14 |
11 | 10 | adantr 274 | . . . . . . . . . . . . 13 |
12 | 8, 11 | mpteq2da 4076 | . . . . . . . . . . . 12 |
13 | 12 | seqeq3d 10396 | . . . . . . . . . . 11 |
14 | 13 | breq1d 3997 | . . . . . . . . . 10 |
15 | 14 | anbi2d 461 | . . . . . . . . 9 # # |
16 | 15 | exbidv 1818 | . . . . . . . 8 # # |
17 | 16 | rexbidv 2471 | . . . . . . 7 # # |
18 | 12 | seqeq3d 10396 | . . . . . . . 8 |
19 | 18 | breq1d 3997 | . . . . . . 7 |
20 | 17, 19 | anbi12d 470 | . . . . . 6 # # |
21 | 5, 20 | anbi12d 470 | . . . . 5 DECID # DECID # |
22 | 21 | rexbidv 2471 | . . . 4 DECID # DECID # |
23 | f1oeq3 5431 | . . . . . . 7 | |
24 | 23 | anbi1d 462 | . . . . . 6 |
25 | 24 | exbidv 1818 | . . . . 5 |
26 | 25 | rexbidv 2471 | . . . 4 |
27 | 22, 26 | orbi12d 788 | . . 3 DECID # DECID # |
28 | 27 | iotabidv 5179 | . 2 DECID # DECID # |
29 | df-proddc 11501 | . 2 DECID # | |
30 | df-proddc 11501 | . 2 DECID # | |
31 | 28, 29, 30 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wnfc 2299 wral 2448 wrex 2449 csb 3049 wss 3121 cif 3525 class class class wbr 3987 cmpt 4048 cio 5156 wf1o 5195 cfv 5196 (class class class)co 5850 cc0 7761 c1 7762 cmul 7766 cle 7942 # cap 8487 cn 8865 cz 9199 cuz 9474 cfz 9952 cseq 10388 cli 11228 cprod 11500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-if 3526 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-cnv 4617 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-recs 6281 df-frec 6367 df-seqfrec 10389 df-proddc 11501 |
This theorem is referenced by: prodeq1 11503 |
Copyright terms: Public domain | W3C validator |