| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq1f | Unicode version | ||
| Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1f.1 |
|
| prodeq1f.2 |
|
| Ref | Expression |
|---|---|
| prodeq1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3247 |
. . . . . . 7
| |
| 2 | eleq2 2293 |
. . . . . . . . 9
| |
| 3 | 2 | dcbid 843 |
. . . . . . . 8
|
| 4 | 3 | ralbidv 2530 |
. . . . . . 7
|
| 5 | 1, 4 | anbi12d 473 |
. . . . . 6
|
| 6 | prodeq1f.1 |
. . . . . . . . . . . . . 14
| |
| 7 | prodeq1f.2 |
. . . . . . . . . . . . . 14
| |
| 8 | 6, 7 | nfeq 2380 |
. . . . . . . . . . . . 13
|
| 9 | eleq2 2293 |
. . . . . . . . . . . . . . 15
| |
| 10 | 9 | ifbid 3624 |
. . . . . . . . . . . . . 14
|
| 11 | 10 | adantr 276 |
. . . . . . . . . . . . 13
|
| 12 | 8, 11 | mpteq2da 4172 |
. . . . . . . . . . . 12
|
| 13 | 12 | seqeq3d 10672 |
. . . . . . . . . . 11
|
| 14 | 13 | breq1d 4092 |
. . . . . . . . . 10
|
| 15 | 14 | anbi2d 464 |
. . . . . . . . 9
|
| 16 | 15 | exbidv 1871 |
. . . . . . . 8
|
| 17 | 16 | rexbidv 2531 |
. . . . . . 7
|
| 18 | 12 | seqeq3d 10672 |
. . . . . . . 8
|
| 19 | 18 | breq1d 4092 |
. . . . . . 7
|
| 20 | 17, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | 5, 20 | anbi12d 473 |
. . . . 5
|
| 22 | 21 | rexbidv 2531 |
. . . 4
|
| 23 | f1oeq3 5561 |
. . . . . . 7
| |
| 24 | 23 | anbi1d 465 |
. . . . . 6
|
| 25 | 24 | exbidv 1871 |
. . . . 5
|
| 26 | 25 | rexbidv 2531 |
. . . 4
|
| 27 | 22, 26 | orbi12d 798 |
. . 3
|
| 28 | 27 | iotabidv 5300 |
. 2
|
| 29 | df-proddc 12057 |
. 2
| |
| 30 | df-proddc 12057 |
. 2
| |
| 31 | 28, 29, 30 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-seqfrec 10665 df-proddc 12057 |
| This theorem is referenced by: prodeq1 12059 |
| Copyright terms: Public domain | W3C validator |