ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq2 Unicode version

Theorem prodeq2 11498
Description: Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 2497 . . . . . . . . . . . . . . . 16  |-  F/ k A. k  e.  A  B  =  C
2 nfv 1516 . . . . . . . . . . . . . . . 16  |-  F/ k  m  e.  ZZ
31, 2nfan 1553 . . . . . . . . . . . . . . 15  |-  F/ k ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )
4 nfv 1516 . . . . . . . . . . . . . . 15  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
53, 4nfan 1553 . . . . . . . . . . . . . 14  |-  F/ k ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )
6 nfv 1516 . . . . . . . . . . . . . 14  |-  F/ k  n  e.  ( ZZ>= `  m )
75, 6nfan 1553 . . . . . . . . . . . . 13  |-  F/ k ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )
8 simp-4l 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  A. k  e.  A  B  =  C )
9 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  k  e.  A )
10 rsp 2513 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  A  B  =  C  ->  ( k  e.  A  ->  B  =  C ) )
118, 9, 10sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  B  =  C )
1211adantllr 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m )
)  /\  k  e.  ZZ )  /\  k  e.  A )  ->  B  =  C )
13 simpllr 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  m  e.  ZZ )
14 simplrl 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A  C_  ( ZZ>= `  m ) )
15 simplrr 526 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )
16 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1713, 14, 15, 16sumdc 11299 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1817adantlr 469 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1912, 18ifeq1dadc 3550 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
207, 19mpteq2da 4071 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2120seqeq3d 10388 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  ->  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2221breq1d 3992 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
(  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
2322anbi2d 460 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2423exbidv 1813 . . . . . . . 8  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( E. y ( y #  0  /\  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2524rexbidva 2463 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2611, 17ifeq1dadc 3550 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
275, 26mpteq2da 4071 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2827seqeq3d 10388 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  ->  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2928breq1d 3992 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
(  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
3025, 29anbi12d 465 . . . . . 6  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
3130pm5.32da 448 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
3231rexbidva 2463 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
33 f1of 5432 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
3433ad3antlr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  f : ( 1 ... m ) --> A )
35 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  NN )
36 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  <_  m )
37 simp-4r 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  NN )
3837nnzd 9312 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  ZZ )
39 fznn 10024 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4038, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4135, 36, 40mpbir2and 934 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  ( 1 ... m
) )
4234, 41ffvelrnd 5621 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
f `  n )  e.  A )
43 simp-4l 531 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  A. k  e.  A  B  =  C )
44 nfcsb1v 3078 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
45 nfcsb1v 3078 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
4644, 45nfeq 2316 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
47 csbeq1a 3054 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
48 csbeq1a 3054 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
4947, 48eqeq12d 2180 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
5046, 49rspc 2824 . . . . . . . . . . . . 13  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 n )  / 
k ]_ C ) )
5142, 43, 50sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  n )  /  k ]_ C )
52 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  NN )
5352nnzd 9312 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  ZZ )
54 simpllr 524 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  NN )
5554nnzd 9312 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  ZZ )
56 zdcle 9267 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  m  e.  ZZ )  -> DECID  n  <_  m )
5753, 55, 56syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  -> DECID  n  <_  m )
5851, 57ifeq1dadc 3550 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
5958mpteq2dva 4072 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) )
6059seqeq3d 10388 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) )
6160fveq1d 5488 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) )
6261eqeq2d 2177 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) )
6362pm5.32da 448 . . . . . 6  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6463exbidv 1813 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6564rexbidva 2463 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6632, 65orbi12d 783 . . 3  |-  ( A. k  e.  A  B  =  C  ->  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
6766iotabidv 5174 . 2  |-  ( A. k  e.  A  B  =  C  ->  ( iota
x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
68 df-proddc 11492 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
69 df-proddc 11492 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
7067, 68, 693eqtr4g 2224 1  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   [_csb 3045    C_ wss 3116   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   iotacio 5151   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   0cc0 7753   1c1 7754    x. cmul 7758    <_ cle 7934   # cap 8479   NNcn 8857   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380    ~~> cli 11219   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-seqfrec 10381  df-proddc 11492
This theorem is referenced by:  prodeq2i  11503  prodeq2d  11506
  Copyright terms: Public domain W3C validator