ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq2 Unicode version

Theorem prodeq2 11488
Description: Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 2495 . . . . . . . . . . . . . . . 16  |-  F/ k A. k  e.  A  B  =  C
2 nfv 1515 . . . . . . . . . . . . . . . 16  |-  F/ k  m  e.  ZZ
31, 2nfan 1552 . . . . . . . . . . . . . . 15  |-  F/ k ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )
4 nfv 1515 . . . . . . . . . . . . . . 15  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
53, 4nfan 1552 . . . . . . . . . . . . . 14  |-  F/ k ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )
6 nfv 1515 . . . . . . . . . . . . . 14  |-  F/ k  n  e.  ( ZZ>= `  m )
75, 6nfan 1552 . . . . . . . . . . . . 13  |-  F/ k ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )
8 simp-4l 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  A. k  e.  A  B  =  C )
9 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  k  e.  A )
10 rsp 2511 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  A  B  =  C  ->  ( k  e.  A  ->  B  =  C ) )
118, 9, 10sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  B  =  C )
1211adantllr 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m )
)  /\  k  e.  ZZ )  /\  k  e.  A )  ->  B  =  C )
13 simpllr 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  m  e.  ZZ )
14 simplrl 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A  C_  ( ZZ>= `  m ) )
15 simplrr 526 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )
16 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1713, 14, 15, 16sumdc 11289 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1817adantlr 469 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1912, 18ifeq1dadc 3546 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
207, 19mpteq2da 4066 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2120seqeq3d 10379 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  ->  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2221breq1d 3987 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
(  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
2322anbi2d 460 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2423exbidv 1812 . . . . . . . 8  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( E. y ( y #  0  /\  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2524rexbidva 2461 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2611, 17ifeq1dadc 3546 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
275, 26mpteq2da 4066 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2827seqeq3d 10379 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  ->  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2928breq1d 3987 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
(  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
3025, 29anbi12d 465 . . . . . 6  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
3130pm5.32da 448 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
3231rexbidva 2461 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
33 f1of 5427 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
3433ad3antlr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  f : ( 1 ... m ) --> A )
35 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  NN )
36 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  <_  m )
37 simp-4r 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  NN )
3837nnzd 9304 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  ZZ )
39 fznn 10015 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4038, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4135, 36, 40mpbir2and 933 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  ( 1 ... m
) )
4234, 41ffvelrnd 5616 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
f `  n )  e.  A )
43 simp-4l 531 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  A. k  e.  A  B  =  C )
44 nfcsb1v 3074 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
45 nfcsb1v 3074 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
4644, 45nfeq 2314 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
47 csbeq1a 3050 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
48 csbeq1a 3050 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
4947, 48eqeq12d 2179 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
5046, 49rspc 2820 . . . . . . . . . . . . 13  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 n )  / 
k ]_ C ) )
5142, 43, 50sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  n )  /  k ]_ C )
52 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  NN )
5352nnzd 9304 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  ZZ )
54 simpllr 524 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  NN )
5554nnzd 9304 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  ZZ )
56 zdcle 9259 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  m  e.  ZZ )  -> DECID  n  <_  m )
5753, 55, 56syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  -> DECID  n  <_  m )
5851, 57ifeq1dadc 3546 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
5958mpteq2dva 4067 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) )
6059seqeq3d 10379 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) )
6160fveq1d 5483 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) )
6261eqeq2d 2176 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) )
6362pm5.32da 448 . . . . . 6  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6463exbidv 1812 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6564rexbidva 2461 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6632, 65orbi12d 783 . . 3  |-  ( A. k  e.  A  B  =  C  ->  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
6766iotabidv 5169 . 2  |-  ( A. k  e.  A  B  =  C  ->  ( iota
x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
68 df-proddc 11482 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
69 df-proddc 11482 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
7067, 68, 693eqtr4g 2222 1  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1342   E.wex 1479    e. wcel 2135   A.wral 2442   E.wrex 2443   [_csb 3041    C_ wss 3112   ifcif 3516   class class class wbr 3977    |-> cmpt 4038   iotacio 5146   -->wf 5179   -1-1-onto->wf1o 5182   ` cfv 5183  (class class class)co 5837   0cc0 7745   1c1 7746    x. cmul 7750    <_ cle 7926   # cap 8471   NNcn 8849   ZZcz 9183   ZZ>=cuz 9458   ...cfz 9936    seqcseq 10371    ~~> cli 11209   prod_cprod 11481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-f1o 5190  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-recs 6265  df-frec 6351  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184  df-uz 9459  df-fz 9937  df-seqfrec 10372  df-proddc 11482
This theorem is referenced by:  prodeq2i  11493  prodeq2d  11496
  Copyright terms: Public domain W3C validator