ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq2 Unicode version

Theorem prodeq2 11358
Description: Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 2469 . . . . . . . . . . . . . . . 16  |-  F/ k A. k  e.  A  B  =  C
2 nfv 1509 . . . . . . . . . . . . . . . 16  |-  F/ k  m  e.  ZZ
31, 2nfan 1545 . . . . . . . . . . . . . . 15  |-  F/ k ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )
4 nfv 1509 . . . . . . . . . . . . . . 15  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
53, 4nfan 1545 . . . . . . . . . . . . . 14  |-  F/ k ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )
6 nfv 1509 . . . . . . . . . . . . . 14  |-  F/ k  n  e.  ( ZZ>= `  m )
75, 6nfan 1545 . . . . . . . . . . . . 13  |-  F/ k ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )
8 simp-4l 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  A. k  e.  A  B  =  C )
9 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  k  e.  A )
10 rsp 2483 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  A  B  =  C  ->  ( k  e.  A  ->  B  =  C ) )
118, 9, 10sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  B  =  C )
1211adantllr 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m )
)  /\  k  e.  ZZ )  /\  k  e.  A )  ->  B  =  C )
13 simpllr 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  m  e.  ZZ )
14 simplrl 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A  C_  ( ZZ>= `  m ) )
15 simplrr 526 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )
16 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1713, 14, 15, 16sumdc 11159 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1817adantlr 469 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1912, 18ifeq1dadc 3507 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
207, 19mpteq2da 4025 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2120seqeq3d 10257 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  ->  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2221breq1d 3947 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
(  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
2322anbi2d 460 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2423exbidv 1798 . . . . . . . 8  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( E. y ( y #  0  /\  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2524rexbidva 2435 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2611, 17ifeq1dadc 3507 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
275, 26mpteq2da 4025 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2827seqeq3d 10257 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  ->  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2928breq1d 3947 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
(  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
3025, 29anbi12d 465 . . . . . 6  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
3130pm5.32da 448 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
3231rexbidva 2435 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
33 f1of 5375 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
3433ad3antlr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  f : ( 1 ... m ) --> A )
35 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  NN )
36 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  <_  m )
37 simp-4r 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  NN )
3837nnzd 9196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  ZZ )
39 fznn 9900 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4038, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4135, 36, 40mpbir2and 929 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  ( 1 ... m
) )
4234, 41ffvelrnd 5564 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
f `  n )  e.  A )
43 simp-4l 531 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  A. k  e.  A  B  =  C )
44 nfcsb1v 3040 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
45 nfcsb1v 3040 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
4644, 45nfeq 2290 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
47 csbeq1a 3016 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
48 csbeq1a 3016 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
4947, 48eqeq12d 2155 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
5046, 49rspc 2787 . . . . . . . . . . . . 13  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 n )  / 
k ]_ C ) )
5142, 43, 50sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  n )  /  k ]_ C )
52 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  NN )
5352nnzd 9196 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  ZZ )
54 simpllr 524 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  NN )
5554nnzd 9196 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  ZZ )
56 zdcle 9151 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  m  e.  ZZ )  -> DECID  n  <_  m )
5753, 55, 56syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  -> DECID  n  <_  m )
5851, 57ifeq1dadc 3507 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
5958mpteq2dva 4026 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) )
6059seqeq3d 10257 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) )
6160fveq1d 5431 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) )
6261eqeq2d 2152 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) )
6362pm5.32da 448 . . . . . 6  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6463exbidv 1798 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6564rexbidva 2435 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6632, 65orbi12d 783 . . 3  |-  ( A. k  e.  A  B  =  C  ->  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
6766iotabidv 5117 . 2  |-  ( A. k  e.  A  B  =  C  ->  ( iota
x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
68 df-proddc 11352 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
69 df-proddc 11352 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
7067, 68, 693eqtr4g 2198 1  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   [_csb 3007    C_ wss 3076   ifcif 3479   class class class wbr 3937    |-> cmpt 3997   iotacio 5094   -->wf 5127   -1-1-onto->wf1o 5130   ` cfv 5131  (class class class)co 5782   0cc0 7644   1c1 7645    x. cmul 7649    <_ cle 7825   # cap 8367   NNcn 8744   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249    ~~> cli 11079   prod_cprod 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-seqfrec 10250  df-proddc 11352
This theorem is referenced by:  prodeq2i  11363  prodeq2d  11366
  Copyright terms: Public domain W3C validator