ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq2 Unicode version

Theorem prodeq2 12068
Description: Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 2561 . . . . . . . . . . . . . . . 16  |-  F/ k A. k  e.  A  B  =  C
2 nfv 1574 . . . . . . . . . . . . . . . 16  |-  F/ k  m  e.  ZZ
31, 2nfan 1611 . . . . . . . . . . . . . . 15  |-  F/ k ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )
4 nfv 1574 . . . . . . . . . . . . . . 15  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
53, 4nfan 1611 . . . . . . . . . . . . . 14  |-  F/ k ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )
6 nfv 1574 . . . . . . . . . . . . . 14  |-  F/ k  n  e.  ( ZZ>= `  m )
75, 6nfan 1611 . . . . . . . . . . . . 13  |-  F/ k ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )
8 simp-4l 541 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  A. k  e.  A  B  =  C )
9 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  k  e.  A )
10 rsp 2577 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  A  B  =  C  ->  ( k  e.  A  ->  B  =  C ) )
118, 9, 10sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  /\  k  e.  A
)  ->  B  =  C )
1211adantllr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m )
)  /\  k  e.  ZZ )  /\  k  e.  A )  ->  B  =  C )
13 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  m  e.  ZZ )
14 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A  C_  ( ZZ>= `  m ) )
15 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )
16 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
1713, 14, 15, 16sumdc 11869 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1817adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  -> DECID  k  e.  A )
1912, 18ifeq1dadc 3633 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
207, 19mpteq2da 4173 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2120seqeq3d 10677 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  ->  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2221breq1d 4093 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
(  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
2322anbi2d 464 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2423exbidv 1871 . . . . . . . 8  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ( ZZ>= `  m ) )  -> 
( E. y ( y #  0  /\  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2524rexbidva 2527 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2611, 17ifeq1dadc 3633 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 ) )
275, 26mpteq2da 4173 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2827seqeq3d 10677 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  ->  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2928breq1d 4093 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
(  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
3025, 29anbi12d 473 . . . . . 6  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  -> 
( ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
3130pm5.32da 452 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
3231rexbidva 2527 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
33 f1of 5572 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
3433ad3antlr 493 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  f : ( 1 ... m ) --> A )
35 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  NN )
36 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  <_  m )
37 simp-4r 542 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  NN )
3837nnzd 9568 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  ZZ )
39 fznn 10285 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4038, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
4135, 36, 40mpbir2and 950 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  ( 1 ... m
) )
4234, 41ffvelcdmd 5771 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
f `  n )  e.  A )
43 simp-4l 541 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  A. k  e.  A  B  =  C )
44 nfcsb1v 3157 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
45 nfcsb1v 3157 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
4644, 45nfeq 2380 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
47 csbeq1a 3133 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
48 csbeq1a 3133 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
4947, 48eqeq12d 2244 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
5046, 49rspc 2901 . . . . . . . . . . . . 13  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 n )  / 
k ]_ C ) )
5142, 43, 50sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  n )  /  k ]_ C )
52 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  NN )
5352nnzd 9568 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  ZZ )
54 simpllr 534 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  NN )
5554nnzd 9568 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  ZZ )
56 zdcle 9523 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  m  e.  ZZ )  -> DECID  n  <_  m )
5753, 55, 56syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  -> DECID  n  <_  m )
5851, 57ifeq1dadc 3633 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
5958mpteq2dva 4174 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) )
6059seqeq3d 10677 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) )
6160fveq1d 5629 . . . . . . . 8  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) )
6261eqeq2d 2241 . . . . . . 7  |-  ( ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) )
6362pm5.32da 452 . . . . . 6  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6463exbidv 1871 . . . . 5  |-  ( ( A. k  e.  A  B  =  C  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6564rexbidva 2527 . . . 4  |-  ( A. k  e.  A  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
6632, 65orbi12d 798 . . 3  |-  ( A. k  e.  A  B  =  C  ->  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
6766iotabidv 5301 . 2  |-  ( A. k  e.  A  B  =  C  ->  ( iota
x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
68 df-proddc 12062 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
69 df-proddc 12062 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
7067, 68, 693eqtr4g 2287 1  |-  ( A. k  e.  A  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   [_csb 3124    C_ wss 3197   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   iotacio 5276   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    x. cmul 8004    <_ cle 8182   # cap 8728   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669    ~~> cli 11789   prod_cprod 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670  df-proddc 12062
This theorem is referenced by:  prodeq2i  12073  prodeq2d  12076  gausslemma2dlem5a  15744
  Copyright terms: Public domain W3C validator