ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli Unicode version

Theorem mulcomli 8149
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
mulcomli.3  |-  ( A  x.  B )  =  C
Assertion
Ref Expression
mulcomli  |-  ( B  x.  A )  =  C

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3  |-  B  e.  CC
2 axi.1 . . 3  |-  A  e.  CC
31, 2mulcomi 8148 . 2  |-  ( B  x.  A )  =  ( A  x.  B
)
4 mulcomli.3 . 2  |-  ( A  x.  B )  =  C
53, 4eqtri 2250 1  |-  ( B  x.  A )  =  C
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993    x. cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211  ax-mulcom 8096
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  nummul2c  9623  halfthird  9716  5recm6rec  9717  sq4e2t8  10854  cos2bnd  12266  dec5nprm  12932  karatsuba  12948  2exp6  12951  2exp8  12953  2exp11  12954  2exp16  12955  2lgslem3a  15766  2lgsoddprmlem3c  15782  2lgsoddprmlem3d  15783  ex-exp  16049  ex-fac  16050
  Copyright terms: Public domain W3C validator