ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli Unicode version

Theorem mulcomli 7964
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
mulcomli.3  |-  ( A  x.  B )  =  C
Assertion
Ref Expression
mulcomli  |-  ( B  x.  A )  =  C

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3  |-  B  e.  CC
2 axi.1 . . 3  |-  A  e.  CC
31, 2mulcomi 7963 . 2  |-  ( B  x.  A )  =  ( A  x.  B
)
4 mulcomli.3 . 2  |-  ( A  x.  B )  =  C
53, 4eqtri 2198 1  |-  ( B  x.  A )  =  C
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5875   CCcc 7809    x. cmul 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159  ax-mulcom 7912
This theorem depends on definitions:  df-bi 117  df-cleq 2170
This theorem is referenced by:  nummul2c  9433  halfthird  9526  5recm6rec  9527  sq4e2t8  10618  cos2bnd  11768  2lgsoddprmlem3c  14460  2lgsoddprmlem3d  14461  ex-exp  14482  ex-fac  14483
  Copyright terms: Public domain W3C validator