ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli Unicode version

Theorem mulcomli 7906
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
mulcomli.3  |-  ( A  x.  B )  =  C
Assertion
Ref Expression
mulcomli  |-  ( B  x.  A )  =  C

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3  |-  B  e.  CC
2 axi.1 . . 3  |-  A  e.  CC
31, 2mulcomi 7905 . 2  |-  ( B  x.  A )  =  ( A  x.  B
)
4 mulcomli.3 . 2  |-  ( A  x.  B )  =  C
53, 4eqtri 2186 1  |-  ( B  x.  A )  =  C
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147  ax-mulcom 7854
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  nummul2c  9371  halfthird  9464  5recm6rec  9465  sq4e2t8  10552  cos2bnd  11701  ex-exp  13608  ex-fac  13609
  Copyright terms: Public domain W3C validator