ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul2c Unicode version

Theorem nummul2c 9552
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul2c.7  |-  ( ( P  x.  A )  +  E )  =  C
nummul2c.8  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul2c  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul2c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 9515 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2277 . . 3  |-  N  e. 
NN0
76nn0cni 9306 . 2  |-  N  e.  CC
8 nummul1c.2 . . 3  |-  P  e. 
NN0
98nn0cni 9306 . 2  |-  P  e.  CC
10 nummul1c.6 . . 3  |-  D  e. 
NN0
11 nummul1c.7 . . 3  |-  E  e. 
NN0
123nn0cni 9306 . . . . . 6  |-  A  e.  CC
1312, 9mulcomi 8077 . . . . 5  |-  ( A  x.  P )  =  ( P  x.  A
)
1413oveq1i 5953 . . . 4  |-  ( ( A  x.  P )  +  E )  =  ( ( P  x.  A )  +  E
)
15 nummul2c.7 . . . 4  |-  ( ( P  x.  A )  +  E )  =  C
1614, 15eqtri 2225 . . 3  |-  ( ( A  x.  P )  +  E )  =  C
174nn0cni 9306 . . . 4  |-  B  e.  CC
18 nummul2c.8 . . . 4  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
199, 17, 18mulcomli 8078 . . 3  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
202, 8, 3, 4, 1, 10, 11, 16, 19nummul1c 9551 . 2  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
217, 9, 20mulcomli 8078 1  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175  (class class class)co 5943    + caddc 7927    x. cmul 7929   NN0cn0 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-inn 9036  df-n0 9295
This theorem is referenced by:  decmul2c  9568
  Copyright terms: Public domain W3C validator