ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul2c Unicode version

Theorem nummul2c 9623
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul2c.7  |-  ( ( P  x.  A )  +  E )  =  C
nummul2c.8  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul2c  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul2c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 9586 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2302 . . 3  |-  N  e. 
NN0
76nn0cni 9377 . 2  |-  N  e.  CC
8 nummul1c.2 . . 3  |-  P  e. 
NN0
98nn0cni 9377 . 2  |-  P  e.  CC
10 nummul1c.6 . . 3  |-  D  e. 
NN0
11 nummul1c.7 . . 3  |-  E  e. 
NN0
123nn0cni 9377 . . . . . 6  |-  A  e.  CC
1312, 9mulcomi 8148 . . . . 5  |-  ( A  x.  P )  =  ( P  x.  A
)
1413oveq1i 6010 . . . 4  |-  ( ( A  x.  P )  +  E )  =  ( ( P  x.  A )  +  E
)
15 nummul2c.7 . . . 4  |-  ( ( P  x.  A )  +  E )  =  C
1614, 15eqtri 2250 . . 3  |-  ( ( A  x.  P )  +  E )  =  C
174nn0cni 9377 . . . 4  |-  B  e.  CC
18 nummul2c.8 . . . 4  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
199, 17, 18mulcomli 8149 . . 3  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
202, 8, 3, 4, 1, 10, 11, 16, 19nummul1c 9622 . 2  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
217, 9, 20mulcomli 8149 1  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000    + caddc 7998    x. cmul 8000   NN0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-inn 9107  df-n0 9366
This theorem is referenced by:  decmul2c  9639
  Copyright terms: Public domain W3C validator