![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nummul2c | Unicode version |
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nummul1c.1 |
![]() ![]() ![]() ![]() |
nummul1c.2 |
![]() ![]() ![]() ![]() |
nummul1c.3 |
![]() ![]() ![]() ![]() |
nummul1c.4 |
![]() ![]() ![]() ![]() |
nummul1c.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nummul1c.6 |
![]() ![]() ![]() ![]() |
nummul1c.7 |
![]() ![]() ![]() ![]() |
nummul2c.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nummul2c.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nummul2c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nummul1c.5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nummul1c.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | nummul1c.3 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | nummul1c.4 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | numcl 9396 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | eqeltri 2250 |
. . 3
![]() ![]() ![]() ![]() |
7 | 6 | nn0cni 9188 |
. 2
![]() ![]() ![]() ![]() |
8 | nummul1c.2 |
. . 3
![]() ![]() ![]() ![]() | |
9 | 8 | nn0cni 9188 |
. 2
![]() ![]() ![]() ![]() |
10 | nummul1c.6 |
. . 3
![]() ![]() ![]() ![]() | |
11 | nummul1c.7 |
. . 3
![]() ![]() ![]() ![]() | |
12 | 3 | nn0cni 9188 |
. . . . . 6
![]() ![]() ![]() ![]() |
13 | 12, 9 | mulcomi 7963 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | oveq1i 5885 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | nummul2c.7 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | eqtri 2198 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 4 | nn0cni 9188 |
. . . 4
![]() ![]() ![]() ![]() |
18 | nummul2c.8 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 9, 17, 18 | mulcomli 7964 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 2, 8, 3, 4, 1, 10, 11, 16, 19 | nummul1c 9432 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 7, 9, 20 | mulcomli 7964 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-sub 8130 df-inn 8920 df-n0 9177 |
This theorem is referenced by: decmul2c 9449 |
Copyright terms: Public domain | W3C validator |