ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem3d Unicode version

Theorem 2lgsoddprmlem3d 15783
Description: Lemma 4 for 2lgsoddprmlem3 15784. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3d  |-  ( ( ( 7 ^ 2 )  -  1 )  /  8 )  =  ( 2  x.  3 )

Proof of Theorem 2lgsoddprmlem3d
StepHypRef Expression
1 6cn 9188 . . 3  |-  6  e.  CC
2 8cn 9192 . . 3  |-  8  e.  CC
3 8re 9191 . . . 4  |-  8  e.  RR
4 8pos 9209 . . . 4  |-  0  <  8
53, 4gt0ap0ii 8771 . . 3  |-  8 #  0
61, 2, 5divcanap4i 8902 . 2  |-  ( ( 6  x.  8 )  /  8 )  =  6
71, 2mulcli 8147 . . . 4  |-  ( 6  x.  8 )  e.  CC
8 ax-1cn 8088 . . . 4  |-  1  e.  CC
9 4p3e7 9251 . . . . . . 7  |-  ( 4  +  3 )  =  7
109eqcomi 2233 . . . . . 6  |-  7  =  ( 4  +  3 )
1110oveq1i 6010 . . . . 5  |-  ( 7 ^ 2 )  =  ( ( 4  +  3 ) ^ 2 )
12 4cn 9184 . . . . . . 7  |-  4  e.  CC
13 3cn 9181 . . . . . . 7  |-  3  e.  CC
1412, 13binom2i 10865 . . . . . 6  |-  ( ( 4  +  3 ) ^ 2 )  =  ( ( ( 4 ^ 2 )  +  ( 2  x.  (
4  x.  3 ) ) )  +  ( 3 ^ 2 ) )
15 sq4e2t8 10854 . . . . . . . . . 10  |-  ( 4 ^ 2 )  =  ( 2  x.  8 )
16 2cn 9177 . . . . . . . . . . . . 13  |-  2  e.  CC
17 4t2e8 9265 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
1812, 16, 17mulcomli 8149 . . . . . . . . . . . 12  |-  ( 2  x.  4 )  =  8
1918oveq1i 6010 . . . . . . . . . . 11  |-  ( ( 2  x.  4 )  x.  3 )  =  ( 8  x.  3 )
2016, 12, 13mulassi 8151 . . . . . . . . . . 11  |-  ( ( 2  x.  4 )  x.  3 )  =  ( 2  x.  (
4  x.  3 ) )
212, 13mulcomi 8148 . . . . . . . . . . 11  |-  ( 8  x.  3 )  =  ( 3  x.  8 )
2219, 20, 213eqtr3i 2258 . . . . . . . . . 10  |-  ( 2  x.  ( 4  x.  3 ) )  =  ( 3  x.  8 )
2315, 22oveq12i 6012 . . . . . . . . 9  |-  ( ( 4 ^ 2 )  +  ( 2  x.  ( 4  x.  3 ) ) )  =  ( ( 2  x.  8 )  +  ( 3  x.  8 ) )
2416, 13, 2adddiri 8153 . . . . . . . . 9  |-  ( ( 2  +  3 )  x.  8 )  =  ( ( 2  x.  8 )  +  ( 3  x.  8 ) )
25 3p2e5 9248 . . . . . . . . . . 11  |-  ( 3  +  2 )  =  5
2613, 16, 25addcomli 8287 . . . . . . . . . 10  |-  ( 2  +  3 )  =  5
2726oveq1i 6010 . . . . . . . . 9  |-  ( ( 2  +  3 )  x.  8 )  =  ( 5  x.  8 )
2823, 24, 273eqtr2i 2256 . . . . . . . 8  |-  ( ( 4 ^ 2 )  +  ( 2  x.  ( 4  x.  3 ) ) )  =  ( 5  x.  8 )
29 sq3 10853 . . . . . . . . 9  |-  ( 3 ^ 2 )  =  9
30 df-9 9172 . . . . . . . . 9  |-  9  =  ( 8  +  1 )
3129, 30eqtri 2250 . . . . . . . 8  |-  ( 3 ^ 2 )  =  ( 8  +  1 )
3228, 31oveq12i 6012 . . . . . . 7  |-  ( ( ( 4 ^ 2 )  +  ( 2  x.  ( 4  x.  3 ) ) )  +  ( 3 ^ 2 ) )  =  ( ( 5  x.  8 )  +  ( 8  +  1 ) )
33 5cn 9186 . . . . . . . . 9  |-  5  e.  CC
3433, 2mulcli 8147 . . . . . . . 8  |-  ( 5  x.  8 )  e.  CC
3534, 2, 8addassi 8150 . . . . . . 7  |-  ( ( ( 5  x.  8 )  +  8 )  +  1 )  =  ( ( 5  x.  8 )  +  ( 8  +  1 ) )
36 df-6 9169 . . . . . . . . . . 11  |-  6  =  ( 5  +  1 )
3736oveq1i 6010 . . . . . . . . . 10  |-  ( 6  x.  8 )  =  ( ( 5  +  1 )  x.  8 )
3833a1i 9 . . . . . . . . . . . 12  |-  ( 8  e.  CC  ->  5  e.  CC )
39 id 19 . . . . . . . . . . . 12  |-  ( 8  e.  CC  ->  8  e.  CC )
4038, 39adddirp1d 8169 . . . . . . . . . . 11  |-  ( 8  e.  CC  ->  (
( 5  +  1 )  x.  8 )  =  ( ( 5  x.  8 )  +  8 ) )
412, 40ax-mp 5 . . . . . . . . . 10  |-  ( ( 5  +  1 )  x.  8 )  =  ( ( 5  x.  8 )  +  8 )
4237, 41eqtri 2250 . . . . . . . . 9  |-  ( 6  x.  8 )  =  ( ( 5  x.  8 )  +  8 )
4342eqcomi 2233 . . . . . . . 8  |-  ( ( 5  x.  8 )  +  8 )  =  ( 6  x.  8 )
4443oveq1i 6010 . . . . . . 7  |-  ( ( ( 5  x.  8 )  +  8 )  +  1 )  =  ( ( 6  x.  8 )  +  1 )
4532, 35, 443eqtr2i 2256 . . . . . 6  |-  ( ( ( 4 ^ 2 )  +  ( 2  x.  ( 4  x.  3 ) ) )  +  ( 3 ^ 2 ) )  =  ( ( 6  x.  8 )  +  1 )
4614, 45eqtri 2250 . . . . 5  |-  ( ( 4  +  3 ) ^ 2 )  =  ( ( 6  x.  8 )  +  1 )
4711, 46eqtri 2250 . . . 4  |-  ( 7 ^ 2 )  =  ( ( 6  x.  8 )  +  1 )
487, 8, 47mvrraddi 8359 . . 3  |-  ( ( 7 ^ 2 )  -  1 )  =  ( 6  x.  8 )
4948oveq1i 6010 . 2  |-  ( ( ( 7 ^ 2 )  -  1 )  /  8 )  =  ( ( 6  x.  8 )  /  8
)
50 3t2e6 9263 . . 3  |-  ( 3  x.  2 )  =  6
5113, 16, 50mulcomli 8149 . 2  |-  ( 2  x.  3 )  =  6
526, 49, 513eqtr4i 2260 1  |-  ( ( ( 7 ^ 2 )  -  1 )  /  8 )  =  ( 2  x.  3 )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993   1c1 7996    + caddc 7998    x. cmul 8000    - cmin 8313    / cdiv 8815   2c2 9157   3c3 9158   4c4 9159   5c5 9160   6c6 9161   7c7 9162   8c8 9163   9c9 9164   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  2lgsoddprmlem3  15784
  Copyright terms: Public domain W3C validator