| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgsoddprmlem3d | Unicode version | ||
| Description: Lemma 4 for 2lgsoddprmlem3 15784. (Contributed by AV, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgsoddprmlem3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 9188 |
. . 3
| |
| 2 | 8cn 9192 |
. . 3
| |
| 3 | 8re 9191 |
. . . 4
| |
| 4 | 8pos 9209 |
. . . 4
| |
| 5 | 3, 4 | gt0ap0ii 8771 |
. . 3
|
| 6 | 1, 2, 5 | divcanap4i 8902 |
. 2
|
| 7 | 1, 2 | mulcli 8147 |
. . . 4
|
| 8 | ax-1cn 8088 |
. . . 4
| |
| 9 | 4p3e7 9251 |
. . . . . . 7
| |
| 10 | 9 | eqcomi 2233 |
. . . . . 6
|
| 11 | 10 | oveq1i 6010 |
. . . . 5
|
| 12 | 4cn 9184 |
. . . . . . 7
| |
| 13 | 3cn 9181 |
. . . . . . 7
| |
| 14 | 12, 13 | binom2i 10865 |
. . . . . 6
|
| 15 | sq4e2t8 10854 |
. . . . . . . . . 10
| |
| 16 | 2cn 9177 |
. . . . . . . . . . . . 13
| |
| 17 | 4t2e8 9265 |
. . . . . . . . . . . . 13
| |
| 18 | 12, 16, 17 | mulcomli 8149 |
. . . . . . . . . . . 12
|
| 19 | 18 | oveq1i 6010 |
. . . . . . . . . . 11
|
| 20 | 16, 12, 13 | mulassi 8151 |
. . . . . . . . . . 11
|
| 21 | 2, 13 | mulcomi 8148 |
. . . . . . . . . . 11
|
| 22 | 19, 20, 21 | 3eqtr3i 2258 |
. . . . . . . . . 10
|
| 23 | 15, 22 | oveq12i 6012 |
. . . . . . . . 9
|
| 24 | 16, 13, 2 | adddiri 8153 |
. . . . . . . . 9
|
| 25 | 3p2e5 9248 |
. . . . . . . . . . 11
| |
| 26 | 13, 16, 25 | addcomli 8287 |
. . . . . . . . . 10
|
| 27 | 26 | oveq1i 6010 |
. . . . . . . . 9
|
| 28 | 23, 24, 27 | 3eqtr2i 2256 |
. . . . . . . 8
|
| 29 | sq3 10853 |
. . . . . . . . 9
| |
| 30 | df-9 9172 |
. . . . . . . . 9
| |
| 31 | 29, 30 | eqtri 2250 |
. . . . . . . 8
|
| 32 | 28, 31 | oveq12i 6012 |
. . . . . . 7
|
| 33 | 5cn 9186 |
. . . . . . . . 9
| |
| 34 | 33, 2 | mulcli 8147 |
. . . . . . . 8
|
| 35 | 34, 2, 8 | addassi 8150 |
. . . . . . 7
|
| 36 | df-6 9169 |
. . . . . . . . . . 11
| |
| 37 | 36 | oveq1i 6010 |
. . . . . . . . . 10
|
| 38 | 33 | a1i 9 |
. . . . . . . . . . . 12
|
| 39 | id 19 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | adddirp1d 8169 |
. . . . . . . . . . 11
|
| 41 | 2, 40 | ax-mp 5 |
. . . . . . . . . 10
|
| 42 | 37, 41 | eqtri 2250 |
. . . . . . . . 9
|
| 43 | 42 | eqcomi 2233 |
. . . . . . . 8
|
| 44 | 43 | oveq1i 6010 |
. . . . . . 7
|
| 45 | 32, 35, 44 | 3eqtr2i 2256 |
. . . . . 6
|
| 46 | 14, 45 | eqtri 2250 |
. . . . 5
|
| 47 | 11, 46 | eqtri 2250 |
. . . 4
|
| 48 | 7, 8, 47 | mvrraddi 8359 |
. . 3
|
| 49 | 48 | oveq1i 6010 |
. 2
|
| 50 | 3t2e6 9263 |
. . 3
| |
| 51 | 13, 16, 50 | mulcomli 8149 |
. 2
|
| 52 | 6, 49, 51 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-exp 10756 |
| This theorem is referenced by: 2lgsoddprmlem3 15784 |
| Copyright terms: Public domain | W3C validator |