ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi Unicode version

Theorem mulcomi 8148
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
Assertion
Ref Expression
mulcomi  |-  ( A  x.  B )  =  ( B  x.  A
)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 mulcom 8124 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
41, 2, 3mp2an 426 1  |-  ( A  x.  B )  =  ( B  x.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993    x. cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 8096
This theorem is referenced by:  mulcomli  8149  8th4div3  9326  numma2c  9619  nummul2c  9623  9t11e99  9703  binom2i  10865  fac3  10949  tanval2ap  12219  pockthi  12876  decsplit1  12946  decsplit  12947  sincosq4sgn  15497  2logb9irrALT  15642  2lgsoddprmlem2  15779  2lgsoddprmlem3d  15783
  Copyright terms: Public domain W3C validator