ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi Unicode version

Theorem mulcomi 8077
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
Assertion
Ref Expression
mulcomi  |-  ( A  x.  B )  =  ( B  x.  A
)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 mulcom 8053 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
41, 2, 3mp2an 426 1  |-  ( A  x.  B )  =  ( B  x.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175  (class class class)co 5943   CCcc 7922    x. cmul 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 8025
This theorem is referenced by:  mulcomli  8078  8th4div3  9255  numma2c  9548  nummul2c  9552  9t11e99  9632  binom2i  10791  fac3  10875  tanval2ap  11966  pockthi  12623  decsplit1  12693  decsplit  12694  sincosq4sgn  15243  2logb9irrALT  15388  2lgsoddprmlem2  15525  2lgsoddprmlem3d  15529
  Copyright terms: Public domain W3C validator