ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi Unicode version

Theorem mulcomi 7905
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
Assertion
Ref Expression
mulcomi  |-  ( A  x.  B )  =  ( B  x.  A
)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 mulcom 7882 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
41, 2, 3mp2an 423 1  |-  ( A  x.  B )  =  ( B  x.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107  ax-mulcom 7854
This theorem is referenced by:  mulcomli  7906  8th4div3  9076  numma2c  9367  nummul2c  9371  9t11e99  9451  binom2i  10563  fac3  10645  tanval2ap  11654  pockthi  12288  sincosq4sgn  13390  2logb9irrALT  13532
  Copyright terms: Public domain W3C validator