ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi Unicode version

Theorem mulcomi 8113
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
Assertion
Ref Expression
mulcomi  |-  ( A  x.  B )  =  ( B  x.  A
)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 mulcom 8089 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
41, 2, 3mp2an 426 1  |-  ( A  x.  B )  =  ( B  x.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 8061
This theorem is referenced by:  mulcomli  8114  8th4div3  9291  numma2c  9584  nummul2c  9588  9t11e99  9668  binom2i  10830  fac3  10914  tanval2ap  12139  pockthi  12796  decsplit1  12866  decsplit  12867  sincosq4sgn  15416  2logb9irrALT  15561  2lgsoddprmlem2  15698  2lgsoddprmlem3d  15702
  Copyright terms: Public domain W3C validator