ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5recm6rec Unicode version

Theorem 5recm6rec 9545
Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
Assertion
Ref Expression
5recm6rec  |-  ( ( 1  /  5 )  -  ( 1  / 
6 ) )  =  ( 1  / ; 3 0 )

Proof of Theorem 5recm6rec
StepHypRef Expression
1 5cn 9017 . . 3  |-  5  e.  CC
2 6cn 9019 . . 3  |-  6  e.  CC
3 5re 9016 . . . 4  |-  5  e.  RR
4 5pos 9037 . . . 4  |-  0  <  5
53, 4gt0ap0ii 8603 . . 3  |-  5 #  0
6 6re 9018 . . . 4  |-  6  e.  RR
7 6pos 9038 . . . 4  |-  0  <  6
86, 7gt0ap0ii 8603 . . 3  |-  6 #  0
91, 2, 5, 8subrecapi 8815 . 2  |-  ( ( 1  /  5 )  -  ( 1  / 
6 ) )  =  ( ( 6  -  5 )  /  (
5  x.  6 ) )
10 ax-1cn 7922 . . . 4  |-  1  e.  CC
11 5p1e6 9074 . . . 4  |-  ( 5  +  1 )  =  6
122, 1, 10, 11subaddrii 8264 . . 3  |-  ( 6  -  5 )  =  1
13 6t5e30 9508 . . . 4  |-  ( 6  x.  5 )  = ; 3
0
142, 1, 13mulcomli 7982 . . 3  |-  ( 5  x.  6 )  = ; 3
0
1512, 14oveq12i 5903 . 2  |-  ( ( 6  -  5 )  /  ( 5  x.  6 ) )  =  ( 1  / ; 3 0 )
169, 15eqtri 2210 1  |-  ( ( 1  /  5 )  -  ( 1  / 
6 ) )  =  ( 1  / ; 3 0 )
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5891   0cc0 7829   1c1 7830    x. cmul 7834    - cmin 8146    / cdiv 8647   3c3 8989   5c5 8991   6c6 8992  ;cdc 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-7 9001  df-8 9002  df-9 9003  df-n0 9195  df-dec 9403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator