ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli GIF version

Theorem mulcomli 7966
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 ๐ด โˆˆ โ„‚
axi.2 ๐ต โˆˆ โ„‚
mulcomli.3 (๐ด ยท ๐ต) = ๐ถ
Assertion
Ref Expression
mulcomli (๐ต ยท ๐ด) = ๐ถ

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3 ๐ต โˆˆ โ„‚
2 axi.1 . . 3 ๐ด โˆˆ โ„‚
31, 2mulcomi 7965 . 2 (๐ต ยท ๐ด) = (๐ด ยท ๐ต)
4 mulcomli.3 . 2 (๐ด ยท ๐ต) = ๐ถ
53, 4eqtri 2198 1 (๐ต ยท ๐ด) = ๐ถ
Colors of variables: wff set class
Syntax hints:   = wceq 1353   โˆˆ wcel 2148  (class class class)co 5877  โ„‚cc 7811   ยท cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159  ax-mulcom 7914
This theorem depends on definitions:  df-bi 117  df-cleq 2170
This theorem is referenced by:  nummul2c  9435  halfthird  9528  5recm6rec  9529  sq4e2t8  10620  cos2bnd  11770  2lgsoddprmlem3c  14496  2lgsoddprmlem3d  14497  ex-exp  14518  ex-fac  14519
  Copyright terms: Public domain W3C validator