| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomli | GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 8032 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
| 4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2217 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 · cmul 7884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-mulcom 7980 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: nummul2c 9506 halfthird 9599 5recm6rec 9600 sq4e2t8 10729 cos2bnd 11925 dec5nprm 12583 karatsuba 12599 2exp6 12602 2exp8 12604 2exp11 12605 2exp16 12606 2lgslem3a 15334 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 ex-exp 15373 ex-fac 15374 |
| Copyright terms: Public domain | W3C validator |