ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli GIF version

Theorem mulcomli 8050
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
mulcomli.3 (𝐴 · 𝐵) = 𝐶
Assertion
Ref Expression
mulcomli (𝐵 · 𝐴) = 𝐶

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3 𝐵 ∈ ℂ
2 axi.1 . . 3 𝐴 ∈ ℂ
31, 2mulcomi 8049 . 2 (𝐵 · 𝐴) = (𝐴 · 𝐵)
4 mulcomli.3 . 2 (𝐴 · 𝐵) = 𝐶
53, 4eqtri 2217 1 (𝐵 · 𝐴) = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178  ax-mulcom 7997
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  nummul2c  9523  halfthird  9616  5recm6rec  9617  sq4e2t8  10746  cos2bnd  11942  dec5nprm  12608  karatsuba  12624  2exp6  12627  2exp8  12629  2exp11  12630  2exp16  12631  2lgslem3a  15418  2lgsoddprmlem3c  15434  2lgsoddprmlem3d  15435  ex-exp  15457  ex-fac  15458
  Copyright terms: Public domain W3C validator