![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomli | GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | โข ๐ด โ โ |
axi.2 | โข ๐ต โ โ |
mulcomli.3 | โข (๐ด ยท ๐ต) = ๐ถ |
Ref | Expression |
---|---|
mulcomli | โข (๐ต ยท ๐ด) = ๐ถ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.2 | . . 3 โข ๐ต โ โ | |
2 | axi.1 | . . 3 โข ๐ด โ โ | |
3 | 1, 2 | mulcomi 7965 | . 2 โข (๐ต ยท ๐ด) = (๐ด ยท ๐ต) |
4 | mulcomli.3 | . 2 โข (๐ด ยท ๐ต) = ๐ถ | |
5 | 3, 4 | eqtri 2198 | 1 โข (๐ต ยท ๐ด) = ๐ถ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 โ wcel 2148 (class class class)co 5877 โcc 7811 ยท cmul 7818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 ax-mulcom 7914 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: nummul2c 9435 halfthird 9528 5recm6rec 9529 sq4e2t8 10620 cos2bnd 11770 2lgsoddprmlem3c 14496 2lgsoddprmlem3d 14497 ex-exp 14518 ex-fac 14519 |
Copyright terms: Public domain | W3C validator |