ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli GIF version

Theorem mulcomli 8161
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
mulcomli.3 (𝐴 · 𝐵) = 𝐶
Assertion
Ref Expression
mulcomli (𝐵 · 𝐴) = 𝐶

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3 𝐵 ∈ ℂ
2 axi.1 . . 3 𝐴 ∈ ℂ
31, 2mulcomi 8160 . 2 (𝐵 · 𝐴) = (𝐴 · 𝐵)
4 mulcomli.3 . 2 (𝐴 · 𝐵) = 𝐶
53, 4eqtri 2250 1 (𝐵 · 𝐴) = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6007  cc 8005   · cmul 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211  ax-mulcom 8108
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  nummul2c  9635  halfthird  9728  5recm6rec  9729  sq4e2t8  10867  cos2bnd  12279  dec5nprm  12945  karatsuba  12961  2exp6  12964  2exp8  12966  2exp11  12967  2exp16  12968  2lgslem3a  15780  2lgsoddprmlem3c  15796  2lgsoddprmlem3d  15797  ex-exp  16115  ex-fac  16116
  Copyright terms: Public domain W3C validator