![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomli | GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
Ref | Expression |
---|---|
mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | mulcomi 7976 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2208 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 (class class class)co 5888 ℂcc 7822 · cmul 7829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 ax-17 1536 ax-ext 2169 ax-mulcom 7925 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 |
This theorem is referenced by: nummul2c 9446 halfthird 9539 5recm6rec 9540 sq4e2t8 10631 cos2bnd 11781 2lgsoddprmlem3c 14728 2lgsoddprmlem3d 14729 ex-exp 14750 ex-fac 14751 |
Copyright terms: Public domain | W3C validator |