ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli GIF version

Theorem mulcomli 8033
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
mulcomli.3 (𝐴 · 𝐵) = 𝐶
Assertion
Ref Expression
mulcomli (𝐵 · 𝐴) = 𝐶

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3 𝐵 ∈ ℂ
2 axi.1 . . 3 𝐴 ∈ ℂ
31, 2mulcomi 8032 . 2 (𝐵 · 𝐴) = (𝐴 · 𝐵)
4 mulcomli.3 . 2 (𝐴 · 𝐵) = 𝐶
53, 4eqtri 2217 1 (𝐵 · 𝐴) = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877   · cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178  ax-mulcom 7980
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  nummul2c  9506  halfthird  9599  5recm6rec  9600  sq4e2t8  10729  cos2bnd  11925  dec5nprm  12583  karatsuba  12599  2exp6  12602  2exp8  12604  2exp11  12605  2exp16  12606  2lgslem3a  15334  2lgsoddprmlem3c  15350  2lgsoddprmlem3d  15351  ex-exp  15373  ex-fac  15374
  Copyright terms: Public domain W3C validator