ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli GIF version

Theorem mulcomli 8086
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
mulcomli.3 (𝐴 · 𝐵) = 𝐶
Assertion
Ref Expression
mulcomli (𝐵 · 𝐴) = 𝐶

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3 𝐵 ∈ ℂ
2 axi.1 . . 3 𝐴 ∈ ℂ
31, 2mulcomi 8085 . 2 (𝐵 · 𝐴) = (𝐴 · 𝐵)
4 mulcomli.3 . 2 (𝐴 · 𝐵) = 𝐶
53, 4eqtri 2227 1 (𝐵 · 𝐴) = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930   · cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188  ax-mulcom 8033
This theorem depends on definitions:  df-bi 117  df-cleq 2199
This theorem is referenced by:  nummul2c  9560  halfthird  9653  5recm6rec  9654  sq4e2t8  10789  cos2bnd  12115  dec5nprm  12781  karatsuba  12797  2exp6  12800  2exp8  12802  2exp11  12803  2exp16  12804  2lgslem3a  15614  2lgsoddprmlem3c  15630  2lgsoddprmlem3d  15631  ex-exp  15737  ex-fac  15738
  Copyright terms: Public domain W3C validator