![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ne0d | GIF version |
Description: Deduction form of ne0i 3457. If a class has elements, then it is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ne0d.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
ne0d | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0d.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | ne0i 3457 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2167 ≠ wne 2367 ∅c0 3450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-nul 3451 |
This theorem is referenced by: fihashelne0d 10874 mndbn0 13048 grpbn0 13138 bln0 14630 |
Copyright terms: Public domain | W3C validator |