ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpbn0 Unicode version

Theorem grpbn0 13362
Description: The base set of a group is not empty. It is also inhabited (see grpidcl 13361). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Hypothesis
Ref Expression
grpbn0.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
grpbn0  |-  ( G  e.  Grp  ->  B  =/=  (/) )

Proof of Theorem grpbn0
StepHypRef Expression
1 grpbn0.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2205 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
31, 2grpidcl 13361 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
43ne0d 3468 1  |-  ( G  e.  Grp  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    =/= wne 2376   (/)c0 3460   ` cfv 5271   Basecbs 12832   0gc0g 13088   Grpcgrp 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335
This theorem is referenced by:  grpn0  13367  lmodbn0  14060  lmodsn0  14063
  Copyright terms: Public domain W3C validator