ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ne0ii GIF version

Theorem ne0ii 3319
Description: If a class has elements, then it is nonempty. Inference associated with ne0i 3316. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
n0ii.1 𝐴𝐵
Assertion
Ref Expression
ne0ii 𝐵 ≠ ∅

Proof of Theorem ne0ii
StepHypRef Expression
1 n0ii.1 . 2 𝐴𝐵
2 ne0i 3316 . 2 (𝐴𝐵𝐵 ≠ ∅)
31, 2ax-mp 7 1 𝐵 ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 1448  wne 2267  c0 3310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-v 2643  df-dif 3023  df-nul 3311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator