ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne0 Unicode version

Theorem pw1ne0 7409
Description: The power set of  1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne0  |-  ~P 1o  =/=  (/)

Proof of Theorem pw1ne0
StepHypRef Expression
1 0elpw 4247 . 2  |-  (/)  e.  ~P 1o
21ne0ii 3501 1  |-  ~P 1o  =/=  (/)
Colors of variables: wff set class
Syntax hints:    =/= wne 2400   (/)c0 3491   ~Pcpw 3649   1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651
This theorem is referenced by:  pw1nel3  7412  sucpw1nel3  7414
  Copyright terms: Public domain W3C validator