ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsnd Unicode version

Theorem neldifsnd 3735
Description:  A is not in  ( B  \  { A } ). Deduction form. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsnd  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )

Proof of Theorem neldifsnd
StepHypRef Expression
1 neldifsn 3734 . 2  |-  -.  A  e.  ( B  \  { A } )
21a1i 9 1  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2158    \ cdif 3138   {csn 3604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-v 2751  df-dif 3143  df-sn 3610
This theorem is referenced by:  difsnb  3747  frirrg  4362  elirr  4552
  Copyright terms: Public domain W3C validator