ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsnd Unicode version

Theorem neldifsnd 3775
Description:  A is not in  ( B  \  { A } ). Deduction form. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsnd  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )

Proof of Theorem neldifsnd
StepHypRef Expression
1 neldifsn 3774 . 2  |-  -.  A  e.  ( B  \  { A } )
21a1i 9 1  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2178    \ cdif 3171   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-sn 3649
This theorem is referenced by:  difsnb  3787  frirrg  4415  elirr  4607
  Copyright terms: Public domain W3C validator