ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsnd Unicode version

Theorem neldifsnd 3690
Description:  A is not in  ( B  \  { A } ). Deduction form. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsnd  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )

Proof of Theorem neldifsnd
StepHypRef Expression
1 neldifsn 3689 . 2  |-  -.  A  e.  ( B  \  { A } )
21a1i 9 1  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2128    \ cdif 3099   {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-dif 3104  df-sn 3566
This theorem is referenced by:  difsnb  3699  frirrg  4309  elirr  4498
  Copyright terms: Public domain W3C validator