ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsnd Unicode version

Theorem neldifsnd 3763
Description:  A is not in  ( B  \  { A } ). Deduction form. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsnd  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )

Proof of Theorem neldifsnd
StepHypRef Expression
1 neldifsn 3762 . 2  |-  -.  A  e.  ( B  \  { A } )
21a1i 9 1  |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2175    \ cdif 3162   {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-sn 3638
This theorem is referenced by:  difsnb  3775  frirrg  4396  elirr  4588
  Copyright terms: Public domain W3C validator