Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elirr | Unicode version |
Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4521, we could redefine (df-iord 4351) to also require (df-frind 4317) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4526 (which under that definition would presumably not need ax-setind 4521 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4526. To encourage ordirr 4526 when possible, we mark this theorem as discouraged. (Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsnd 3714 | . . . . . . . . 9 | |
2 | simp1 992 | . . . . . . . . . . 11 | |
3 | eleq1 2233 | . . . . . . . . . . . . . . . 16 | |
4 | eleq1 2233 | . . . . . . . . . . . . . . . 16 | |
5 | 3, 4 | imbi12d 233 | . . . . . . . . . . . . . . 15 |
6 | 5 | spcgv 2817 | . . . . . . . . . . . . . 14 |
7 | 6 | pm2.43b 52 | . . . . . . . . . . . . 13 |
8 | 7 | 3ad2ant2 1014 | . . . . . . . . . . . 12 |
9 | eleq2 2234 | . . . . . . . . . . . . . 14 | |
10 | 9 | imbi1d 230 | . . . . . . . . . . . . 13 |
11 | 10 | 3ad2ant3 1015 | . . . . . . . . . . . 12 |
12 | 8, 11 | mpbid 146 | . . . . . . . . . . 11 |
13 | 2, 12 | mpd 13 | . . . . . . . . . 10 |
14 | 13 | 3expia 1200 | . . . . . . . . 9 |
15 | 1, 14 | mtod 658 | . . . . . . . 8 |
16 | vex 2733 | . . . . . . . . . 10 | |
17 | eldif 3130 | . . . . . . . . . 10 | |
18 | 16, 17 | mpbiran 935 | . . . . . . . . 9 |
19 | velsn 3600 | . . . . . . . . 9 | |
20 | 18, 19 | xchbinx 677 | . . . . . . . 8 |
21 | 15, 20 | sylibr 133 | . . . . . . 7 |
22 | 21 | ex 114 | . . . . . 6 |
23 | 22 | alrimiv 1867 | . . . . 5 |
24 | df-ral 2453 | . . . . . . . 8 | |
25 | clelsb1 2275 | . . . . . . . . . 10 | |
26 | 25 | imbi2i 225 | . . . . . . . . 9 |
27 | 26 | albii 1463 | . . . . . . . 8 |
28 | 24, 27 | bitri 183 | . . . . . . 7 |
29 | 28 | imbi1i 237 | . . . . . 6 |
30 | 29 | albii 1463 | . . . . 5 |
31 | 23, 30 | sylibr 133 | . . . 4 |
32 | ax-setind 4521 | . . . 4 | |
33 | 31, 32 | syl 14 | . . 3 |
34 | eleq1 2233 | . . . 4 | |
35 | 34 | spcgv 2817 | . . 3 |
36 | 33, 35 | mpd 13 | . 2 |
37 | neldifsnd 3714 | . 2 | |
38 | 36, 37 | pm2.65i 634 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wal 1346 wceq 1348 wsb 1755 wcel 2141 wral 2448 cvv 2730 cdif 3118 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-sn 3589 |
This theorem is referenced by: ordirr 4526 elirrv 4532 sucprcreg 4533 ordsoexmid 4546 onnmin 4552 ssnel 4553 ordtri2or2exmid 4555 reg3exmidlemwe 4563 nntri2 6473 nntri3 6476 nndceq 6478 nndcel 6479 phpelm 6844 fiunsnnn 6859 onunsnss 6894 snon0 6913 |
Copyright terms: Public domain | W3C validator |