| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elirr | Unicode version | ||
| Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle.
If we wanted to reduce usage of ax-setind 4585, we could redefine
(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 3764 |
. . . . . . . . 9
| |
| 2 | simp1 1000 |
. . . . . . . . . . 11
| |
| 3 | eleq1 2268 |
. . . . . . . . . . . . . . . 16
| |
| 4 | eleq1 2268 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | spcgv 2860 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | pm2.43b 52 |
. . . . . . . . . . . . 13
|
| 8 | 7 | 3ad2ant2 1022 |
. . . . . . . . . . . 12
|
| 9 | eleq2 2269 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | imbi1d 231 |
. . . . . . . . . . . . 13
|
| 11 | 10 | 3ad2ant3 1023 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | mpbid 147 |
. . . . . . . . . . 11
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
|
| 14 | 13 | 3expia 1208 |
. . . . . . . . 9
|
| 15 | 1, 14 | mtod 665 |
. . . . . . . 8
|
| 16 | vex 2775 |
. . . . . . . . . 10
| |
| 17 | eldif 3175 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | mpbiran 943 |
. . . . . . . . 9
|
| 19 | velsn 3650 |
. . . . . . . . 9
| |
| 20 | 18, 19 | xchbinx 684 |
. . . . . . . 8
|
| 21 | 15, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 21 | ex 115 |
. . . . . 6
|
| 23 | 22 | alrimiv 1897 |
. . . . 5
|
| 24 | df-ral 2489 |
. . . . . . . 8
| |
| 25 | clelsb1 2310 |
. . . . . . . . . 10
| |
| 26 | 25 | imbi2i 226 |
. . . . . . . . 9
|
| 27 | 26 | albii 1493 |
. . . . . . . 8
|
| 28 | 24, 27 | bitri 184 |
. . . . . . 7
|
| 29 | 28 | imbi1i 238 |
. . . . . 6
|
| 30 | 29 | albii 1493 |
. . . . 5
|
| 31 | 23, 30 | sylibr 134 |
. . . 4
|
| 32 | ax-setind 4585 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | eleq1 2268 |
. . . 4
| |
| 35 | 34 | spcgv 2860 |
. . 3
|
| 36 | 33, 35 | mpd 13 |
. 2
|
| 37 | neldifsnd 3764 |
. 2
| |
| 38 | 36, 37 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-v 2774 df-dif 3168 df-sn 3639 |
| This theorem is referenced by: ordirr 4590 elirrv 4596 sucprcreg 4597 ordsoexmid 4610 onnmin 4616 ssnel 4617 ordtri2or2exmid 4619 reg3exmidlemwe 4627 nntri2 6580 nntri3 6583 nndceq 6585 nndcel 6586 phpelm 6963 fiunsnnn 6978 onunsnss 7014 snon0 7037 |
| Copyright terms: Public domain | W3C validator |