| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elirr | Unicode version | ||
| Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle.
If we wanted to reduce usage of ax-setind 4628, we could redefine
(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 3798 |
. . . . . . . . 9
| |
| 2 | simp1 1021 |
. . . . . . . . . . 11
| |
| 3 | eleq1 2292 |
. . . . . . . . . . . . . . . 16
| |
| 4 | eleq1 2292 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | spcgv 2890 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | pm2.43b 52 |
. . . . . . . . . . . . 13
|
| 8 | 7 | 3ad2ant2 1043 |
. . . . . . . . . . . 12
|
| 9 | eleq2 2293 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | imbi1d 231 |
. . . . . . . . . . . . 13
|
| 11 | 10 | 3ad2ant3 1044 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | mpbid 147 |
. . . . . . . . . . 11
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
|
| 14 | 13 | 3expia 1229 |
. . . . . . . . 9
|
| 15 | 1, 14 | mtod 667 |
. . . . . . . 8
|
| 16 | vex 2802 |
. . . . . . . . . 10
| |
| 17 | eldif 3206 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | mpbiran 946 |
. . . . . . . . 9
|
| 19 | velsn 3683 |
. . . . . . . . 9
| |
| 20 | 18, 19 | xchbinx 686 |
. . . . . . . 8
|
| 21 | 15, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 21 | ex 115 |
. . . . . 6
|
| 23 | 22 | alrimiv 1920 |
. . . . 5
|
| 24 | df-ral 2513 |
. . . . . . . 8
| |
| 25 | clelsb1 2334 |
. . . . . . . . . 10
| |
| 26 | 25 | imbi2i 226 |
. . . . . . . . 9
|
| 27 | 26 | albii 1516 |
. . . . . . . 8
|
| 28 | 24, 27 | bitri 184 |
. . . . . . 7
|
| 29 | 28 | imbi1i 238 |
. . . . . 6
|
| 30 | 29 | albii 1516 |
. . . . 5
|
| 31 | 23, 30 | sylibr 134 |
. . . 4
|
| 32 | ax-setind 4628 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | eleq1 2292 |
. . . 4
| |
| 35 | 34 | spcgv 2890 |
. . 3
|
| 36 | 33, 35 | mpd 13 |
. 2
|
| 37 | neldifsnd 3798 |
. 2
| |
| 38 | 36, 37 | pm2.65i 642 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: ordirr 4633 elirrv 4639 sucprcreg 4640 ordsoexmid 4653 onnmin 4659 ssnel 4660 ordtri2or2exmid 4662 reg3exmidlemwe 4670 nntri2 6638 nntri3 6641 nndceq 6643 nndcel 6644 phpelm 7024 fiunsnnn 7039 onunsnss 7075 snon0 7098 |
| Copyright terms: Public domain | W3C validator |