Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elirr | Unicode version |
Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4514, we could redefine (df-iord 4344) to also require (df-frind 4310) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4519 (which under that definition would presumably not need ax-setind 4514 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4519. To encourage ordirr 4519 when possible, we mark this theorem as discouraged. (Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsnd 3707 | . . . . . . . . 9 | |
2 | simp1 987 | . . . . . . . . . . 11 | |
3 | eleq1 2229 | . . . . . . . . . . . . . . . 16 | |
4 | eleq1 2229 | . . . . . . . . . . . . . . . 16 | |
5 | 3, 4 | imbi12d 233 | . . . . . . . . . . . . . . 15 |
6 | 5 | spcgv 2813 | . . . . . . . . . . . . . 14 |
7 | 6 | pm2.43b 52 | . . . . . . . . . . . . 13 |
8 | 7 | 3ad2ant2 1009 | . . . . . . . . . . . 12 |
9 | eleq2 2230 | . . . . . . . . . . . . . 14 | |
10 | 9 | imbi1d 230 | . . . . . . . . . . . . 13 |
11 | 10 | 3ad2ant3 1010 | . . . . . . . . . . . 12 |
12 | 8, 11 | mpbid 146 | . . . . . . . . . . 11 |
13 | 2, 12 | mpd 13 | . . . . . . . . . 10 |
14 | 13 | 3expia 1195 | . . . . . . . . 9 |
15 | 1, 14 | mtod 653 | . . . . . . . 8 |
16 | vex 2729 | . . . . . . . . . 10 | |
17 | eldif 3125 | . . . . . . . . . 10 | |
18 | 16, 17 | mpbiran 930 | . . . . . . . . 9 |
19 | velsn 3593 | . . . . . . . . 9 | |
20 | 18, 19 | xchbinx 672 | . . . . . . . 8 |
21 | 15, 20 | sylibr 133 | . . . . . . 7 |
22 | 21 | ex 114 | . . . . . 6 |
23 | 22 | alrimiv 1862 | . . . . 5 |
24 | df-ral 2449 | . . . . . . . 8 | |
25 | clelsb1 2271 | . . . . . . . . . 10 | |
26 | 25 | imbi2i 225 | . . . . . . . . 9 |
27 | 26 | albii 1458 | . . . . . . . 8 |
28 | 24, 27 | bitri 183 | . . . . . . 7 |
29 | 28 | imbi1i 237 | . . . . . 6 |
30 | 29 | albii 1458 | . . . . 5 |
31 | 23, 30 | sylibr 133 | . . . 4 |
32 | ax-setind 4514 | . . . 4 | |
33 | 31, 32 | syl 14 | . . 3 |
34 | eleq1 2229 | . . . 4 | |
35 | 34 | spcgv 2813 | . . 3 |
36 | 33, 35 | mpd 13 | . 2 |
37 | neldifsnd 3707 | . 2 | |
38 | 36, 37 | pm2.65i 629 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wal 1341 wceq 1343 wsb 1750 wcel 2136 wral 2444 cvv 2726 cdif 3113 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-sn 3582 |
This theorem is referenced by: ordirr 4519 elirrv 4525 sucprcreg 4526 ordsoexmid 4539 onnmin 4545 ssnel 4546 ordtri2or2exmid 4548 reg3exmidlemwe 4556 nntri2 6462 nntri3 6465 nndceq 6467 nndcel 6468 phpelm 6832 fiunsnnn 6847 onunsnss 6882 snon0 6901 |
Copyright terms: Public domain | W3C validator |