ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirr Unicode version

Theorem elirr 4589
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4585, we could redefine  Ord  A (df-iord 4413) to also require  _E 
Fr  A (df-frind 4379) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4590 (which under that definition would presumably not need ax-setind 4585 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4590. To encourage ordirr 4590 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

Assertion
Ref Expression
elirr  |-  -.  A  e.  A

Proof of Theorem elirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 3764 . . . . . . . . 9  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  -.  A  e.  ( _V  \  { A } ) )
2 simp1 1000 . . . . . . . . . . 11  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  A  e.  A )
3 eleq1 2268 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
4 eleq1 2268 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
y  e.  ( _V 
\  { A }
)  <->  A  e.  ( _V  \  { A }
) ) )
53, 4imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( y  =  A  ->  (
( y  e.  x  ->  y  e.  ( _V 
\  { A }
) )  <->  ( A  e.  x  ->  A  e.  ( _V  \  { A } ) ) ) )
65spcgv 2860 . . . . . . . . . . . . . 14  |-  ( A  e.  x  ->  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  -> 
( A  e.  x  ->  A  e.  ( _V 
\  { A }
) ) ) )
76pm2.43b 52 . . . . . . . . . . . . 13  |-  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  -> 
( A  e.  x  ->  A  e.  ( _V 
\  { A }
) ) )
873ad2ant2 1022 . . . . . . . . . . . 12  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  ( A  e.  x  ->  A  e.  ( _V 
\  { A }
) ) )
9 eleq2 2269 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  ( A  e.  x  <->  A  e.  A ) )
109imbi1d 231 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( A  e.  x  ->  A  e.  ( _V 
\  { A }
) )  <->  ( A  e.  A  ->  A  e.  ( _V  \  { A } ) ) ) )
11103ad2ant3 1023 . . . . . . . . . . . 12  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  ( ( A  e.  x  ->  A  e.  ( _V  \  { A } ) )  <->  ( A  e.  A  ->  A  e.  ( _V  \  { A } ) ) ) )
128, 11mpbid 147 . . . . . . . . . . 11  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  ( A  e.  A  ->  A  e.  ( _V 
\  { A }
) ) )
132, 12mpd 13 . . . . . . . . . 10  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  A  e.  ( _V 
\  { A }
) )
14133expia 1208 . . . . . . . . 9  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  ( x  =  A  ->  A  e.  ( _V  \  { A } ) ) )
151, 14mtod 665 . . . . . . . 8  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  -.  x  =  A )
16 vex 2775 . . . . . . . . . 10  |-  x  e. 
_V
17 eldif 3175 . . . . . . . . . 10  |-  ( x  e.  ( _V  \  { A } )  <->  ( x  e.  _V  /\  -.  x  e.  { A } ) )
1816, 17mpbiran 943 . . . . . . . . 9  |-  ( x  e.  ( _V  \  { A } )  <->  -.  x  e.  { A } )
19 velsn 3650 . . . . . . . . 9  |-  ( x  e.  { A }  <->  x  =  A )
2018, 19xchbinx 684 . . . . . . . 8  |-  ( x  e.  ( _V  \  { A } )  <->  -.  x  =  A )
2115, 20sylibr 134 . . . . . . 7  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  x  e.  ( _V  \  { A } ) )
2221ex 115 . . . . . 6  |-  ( A  e.  A  ->  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  ->  x  e.  ( _V  \  { A } ) ) )
2322alrimiv 1897 . . . . 5  |-  ( A  e.  A  ->  A. x
( A. y ( y  e.  x  -> 
y  e.  ( _V 
\  { A }
) )  ->  x  e.  ( _V  \  { A } ) ) )
24 df-ral 2489 . . . . . . . 8  |-  ( A. y  e.  x  [
y  /  x ]
x  e.  ( _V 
\  { A }
)  <->  A. y ( y  e.  x  ->  [ y  /  x ] x  e.  ( _V  \  { A } ) ) )
25 clelsb1 2310 . . . . . . . . . 10  |-  ( [ y  /  x ]
x  e.  ( _V 
\  { A }
)  <->  y  e.  ( _V  \  { A } ) )
2625imbi2i 226 . . . . . . . . 9  |-  ( ( y  e.  x  ->  [ y  /  x ] x  e.  ( _V  \  { A }
) )  <->  ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )
2726albii 1493 . . . . . . . 8  |-  ( A. y ( y  e.  x  ->  [ y  /  x ] x  e.  ( _V  \  { A } ) )  <->  A. y
( y  e.  x  ->  y  e.  ( _V 
\  { A }
) ) )
2824, 27bitri 184 . . . . . . 7  |-  ( A. y  e.  x  [
y  /  x ]
x  e.  ( _V 
\  { A }
)  <->  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )
2928imbi1i 238 . . . . . 6  |-  ( ( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A }
)  ->  x  e.  ( _V  \  { A } ) )  <->  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  ->  x  e.  ( _V  \  { A } ) ) )
3029albii 1493 . . . . 5  |-  ( A. x ( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A } )  ->  x  e.  ( _V  \  { A } ) )  <->  A. x
( A. y ( y  e.  x  -> 
y  e.  ( _V 
\  { A }
) )  ->  x  e.  ( _V  \  { A } ) ) )
3123, 30sylibr 134 . . . 4  |-  ( A  e.  A  ->  A. x
( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A } )  ->  x  e.  ( _V  \  { A } ) ) )
32 ax-setind 4585 . . . 4  |-  ( A. x ( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A } )  ->  x  e.  ( _V  \  { A } ) )  ->  A. x  x  e.  ( _V  \  { A } ) )
3331, 32syl 14 . . 3  |-  ( A  e.  A  ->  A. x  x  e.  ( _V  \  { A } ) )
34 eleq1 2268 . . . 4  |-  ( x  =  A  ->  (
x  e.  ( _V 
\  { A }
)  <->  A  e.  ( _V  \  { A }
) ) )
3534spcgv 2860 . . 3  |-  ( A  e.  A  ->  ( A. x  x  e.  ( _V  \  { A } )  ->  A  e.  ( _V  \  { A } ) ) )
3633, 35mpd 13 . 2  |-  ( A  e.  A  ->  A  e.  ( _V  \  { A } ) )
37 neldifsnd 3764 . 2  |-  ( A  e.  A  ->  -.  A  e.  ( _V  \  { A } ) )
3836, 37pm2.65i 640 1  |-  -.  A  e.  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373   [wsb 1785    e. wcel 2176   A.wral 2484   _Vcvv 2772    \ cdif 3163   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by:  ordirr  4590  elirrv  4596  sucprcreg  4597  ordsoexmid  4610  onnmin  4616  ssnel  4617  ordtri2or2exmid  4619  reg3exmidlemwe  4627  nntri2  6580  nntri3  6583  nndceq  6585  nndcel  6586  phpelm  6963  fiunsnnn  6978  onunsnss  7014  snon0  7037
  Copyright terms: Public domain W3C validator