| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elirr | Unicode version | ||
| Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle.
If we wanted to reduce usage of ax-setind 4574, we could redefine
(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 3754 |
. . . . . . . . 9
| |
| 2 | simp1 999 |
. . . . . . . . . . 11
| |
| 3 | eleq1 2259 |
. . . . . . . . . . . . . . . 16
| |
| 4 | eleq1 2259 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | spcgv 2851 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | pm2.43b 52 |
. . . . . . . . . . . . 13
|
| 8 | 7 | 3ad2ant2 1021 |
. . . . . . . . . . . 12
|
| 9 | eleq2 2260 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | imbi1d 231 |
. . . . . . . . . . . . 13
|
| 11 | 10 | 3ad2ant3 1022 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | mpbid 147 |
. . . . . . . . . . 11
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
|
| 14 | 13 | 3expia 1207 |
. . . . . . . . 9
|
| 15 | 1, 14 | mtod 664 |
. . . . . . . 8
|
| 16 | vex 2766 |
. . . . . . . . . 10
| |
| 17 | eldif 3166 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | mpbiran 942 |
. . . . . . . . 9
|
| 19 | velsn 3640 |
. . . . . . . . 9
| |
| 20 | 18, 19 | xchbinx 683 |
. . . . . . . 8
|
| 21 | 15, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 21 | ex 115 |
. . . . . 6
|
| 23 | 22 | alrimiv 1888 |
. . . . 5
|
| 24 | df-ral 2480 |
. . . . . . . 8
| |
| 25 | clelsb1 2301 |
. . . . . . . . . 10
| |
| 26 | 25 | imbi2i 226 |
. . . . . . . . 9
|
| 27 | 26 | albii 1484 |
. . . . . . . 8
|
| 28 | 24, 27 | bitri 184 |
. . . . . . 7
|
| 29 | 28 | imbi1i 238 |
. . . . . 6
|
| 30 | 29 | albii 1484 |
. . . . 5
|
| 31 | 23, 30 | sylibr 134 |
. . . 4
|
| 32 | ax-setind 4574 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | eleq1 2259 |
. . . 4
| |
| 35 | 34 | spcgv 2851 |
. . 3
|
| 36 | 33, 35 | mpd 13 |
. 2
|
| 37 | neldifsnd 3754 |
. 2
| |
| 38 | 36, 37 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-sn 3629 |
| This theorem is referenced by: ordirr 4579 elirrv 4585 sucprcreg 4586 ordsoexmid 4599 onnmin 4605 ssnel 4606 ordtri2or2exmid 4608 reg3exmidlemwe 4616 nntri2 6561 nntri3 6564 nndceq 6566 nndcel 6567 phpelm 6936 fiunsnnn 6951 onunsnss 6987 snon0 7010 |
| Copyright terms: Public domain | W3C validator |