| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elirr | Unicode version | ||
| Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle.
If we wanted to reduce usage of ax-setind 4603, we could redefine
(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 3775 |
. . . . . . . . 9
| |
| 2 | simp1 1000 |
. . . . . . . . . . 11
| |
| 3 | eleq1 2270 |
. . . . . . . . . . . . . . . 16
| |
| 4 | eleq1 2270 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | spcgv 2867 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | pm2.43b 52 |
. . . . . . . . . . . . 13
|
| 8 | 7 | 3ad2ant2 1022 |
. . . . . . . . . . . 12
|
| 9 | eleq2 2271 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | imbi1d 231 |
. . . . . . . . . . . . 13
|
| 11 | 10 | 3ad2ant3 1023 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | mpbid 147 |
. . . . . . . . . . 11
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
|
| 14 | 13 | 3expia 1208 |
. . . . . . . . 9
|
| 15 | 1, 14 | mtod 665 |
. . . . . . . 8
|
| 16 | vex 2779 |
. . . . . . . . . 10
| |
| 17 | eldif 3183 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | mpbiran 943 |
. . . . . . . . 9
|
| 19 | velsn 3660 |
. . . . . . . . 9
| |
| 20 | 18, 19 | xchbinx 684 |
. . . . . . . 8
|
| 21 | 15, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 21 | ex 115 |
. . . . . 6
|
| 23 | 22 | alrimiv 1898 |
. . . . 5
|
| 24 | df-ral 2491 |
. . . . . . . 8
| |
| 25 | clelsb1 2312 |
. . . . . . . . . 10
| |
| 26 | 25 | imbi2i 226 |
. . . . . . . . 9
|
| 27 | 26 | albii 1494 |
. . . . . . . 8
|
| 28 | 24, 27 | bitri 184 |
. . . . . . 7
|
| 29 | 28 | imbi1i 238 |
. . . . . 6
|
| 30 | 29 | albii 1494 |
. . . . 5
|
| 31 | 23, 30 | sylibr 134 |
. . . 4
|
| 32 | ax-setind 4603 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | eleq1 2270 |
. . . 4
| |
| 35 | 34 | spcgv 2867 |
. . 3
|
| 36 | 33, 35 | mpd 13 |
. 2
|
| 37 | neldifsnd 3775 |
. 2
| |
| 38 | 36, 37 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-sn 3649 |
| This theorem is referenced by: ordirr 4608 elirrv 4614 sucprcreg 4615 ordsoexmid 4628 onnmin 4634 ssnel 4635 ordtri2or2exmid 4637 reg3exmidlemwe 4645 nntri2 6603 nntri3 6606 nndceq 6608 nndcel 6609 phpelm 6989 fiunsnnn 7004 onunsnss 7040 snon0 7063 |
| Copyright terms: Public domain | W3C validator |