| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elirr | Unicode version | ||
| Description: No class is a member of
itself. Exercise 6 of [TakeutiZaring] p.
22.
The reason that this theorem is marked as discouraged is a bit subtle.
If we wanted to reduce usage of ax-setind 4584, we could redefine
(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 3763 |
. . . . . . . . 9
| |
| 2 | simp1 999 |
. . . . . . . . . . 11
| |
| 3 | eleq1 2267 |
. . . . . . . . . . . . . . . 16
| |
| 4 | eleq1 2267 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | spcgv 2859 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | pm2.43b 52 |
. . . . . . . . . . . . 13
|
| 8 | 7 | 3ad2ant2 1021 |
. . . . . . . . . . . 12
|
| 9 | eleq2 2268 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | imbi1d 231 |
. . . . . . . . . . . . 13
|
| 11 | 10 | 3ad2ant3 1022 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | mpbid 147 |
. . . . . . . . . . 11
|
| 13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
|
| 14 | 13 | 3expia 1207 |
. . . . . . . . 9
|
| 15 | 1, 14 | mtod 664 |
. . . . . . . 8
|
| 16 | vex 2774 |
. . . . . . . . . 10
| |
| 17 | eldif 3174 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | mpbiran 942 |
. . . . . . . . 9
|
| 19 | velsn 3649 |
. . . . . . . . 9
| |
| 20 | 18, 19 | xchbinx 683 |
. . . . . . . 8
|
| 21 | 15, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 21 | ex 115 |
. . . . . 6
|
| 23 | 22 | alrimiv 1896 |
. . . . 5
|
| 24 | df-ral 2488 |
. . . . . . . 8
| |
| 25 | clelsb1 2309 |
. . . . . . . . . 10
| |
| 26 | 25 | imbi2i 226 |
. . . . . . . . 9
|
| 27 | 26 | albii 1492 |
. . . . . . . 8
|
| 28 | 24, 27 | bitri 184 |
. . . . . . 7
|
| 29 | 28 | imbi1i 238 |
. . . . . 6
|
| 30 | 29 | albii 1492 |
. . . . 5
|
| 31 | 23, 30 | sylibr 134 |
. . . 4
|
| 32 | ax-setind 4584 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | eleq1 2267 |
. . . 4
| |
| 35 | 34 | spcgv 2859 |
. . 3
|
| 36 | 33, 35 | mpd 13 |
. 2
|
| 37 | neldifsnd 3763 |
. 2
| |
| 38 | 36, 37 | pm2.65i 640 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-v 2773 df-dif 3167 df-sn 3638 |
| This theorem is referenced by: ordirr 4589 elirrv 4595 sucprcreg 4596 ordsoexmid 4609 onnmin 4615 ssnel 4616 ordtri2or2exmid 4618 reg3exmidlemwe 4626 nntri2 6579 nntri3 6582 nndceq 6584 nndcel 6585 phpelm 6962 fiunsnnn 6977 onunsnss 7013 snon0 7036 |
| Copyright terms: Public domain | W3C validator |