ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirr Unicode version

Theorem elirr 4607
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4603, we could redefine  Ord  A (df-iord 4431) to also require  _E 
Fr  A (df-frind 4397) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4608 (which under that definition would presumably not need ax-setind 4603 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4608. To encourage ordirr 4608 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

Assertion
Ref Expression
elirr  |-  -.  A  e.  A

Proof of Theorem elirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 3775 . . . . . . . . 9  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  -.  A  e.  ( _V  \  { A } ) )
2 simp1 1000 . . . . . . . . . . 11  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  A  e.  A )
3 eleq1 2270 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
4 eleq1 2270 . . . . . . . . . . . . . . . 16  |-  ( y  =  A  ->  (
y  e.  ( _V 
\  { A }
)  <->  A  e.  ( _V  \  { A }
) ) )
53, 4imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( y  =  A  ->  (
( y  e.  x  ->  y  e.  ( _V 
\  { A }
) )  <->  ( A  e.  x  ->  A  e.  ( _V  \  { A } ) ) ) )
65spcgv 2867 . . . . . . . . . . . . . 14  |-  ( A  e.  x  ->  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  -> 
( A  e.  x  ->  A  e.  ( _V 
\  { A }
) ) ) )
76pm2.43b 52 . . . . . . . . . . . . 13  |-  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  -> 
( A  e.  x  ->  A  e.  ( _V 
\  { A }
) ) )
873ad2ant2 1022 . . . . . . . . . . . 12  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  ( A  e.  x  ->  A  e.  ( _V 
\  { A }
) ) )
9 eleq2 2271 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  ( A  e.  x  <->  A  e.  A ) )
109imbi1d 231 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( A  e.  x  ->  A  e.  ( _V 
\  { A }
) )  <->  ( A  e.  A  ->  A  e.  ( _V  \  { A } ) ) ) )
11103ad2ant3 1023 . . . . . . . . . . . 12  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  ( ( A  e.  x  ->  A  e.  ( _V  \  { A } ) )  <->  ( A  e.  A  ->  A  e.  ( _V  \  { A } ) ) ) )
128, 11mpbid 147 . . . . . . . . . . 11  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  ( A  e.  A  ->  A  e.  ( _V 
\  { A }
) ) )
132, 12mpd 13 . . . . . . . . . 10  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  /\  x  =  A )  ->  A  e.  ( _V 
\  { A }
) )
14133expia 1208 . . . . . . . . 9  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  ( x  =  A  ->  A  e.  ( _V  \  { A } ) ) )
151, 14mtod 665 . . . . . . . 8  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  -.  x  =  A )
16 vex 2779 . . . . . . . . . 10  |-  x  e. 
_V
17 eldif 3183 . . . . . . . . . 10  |-  ( x  e.  ( _V  \  { A } )  <->  ( x  e.  _V  /\  -.  x  e.  { A } ) )
1816, 17mpbiran 943 . . . . . . . . 9  |-  ( x  e.  ( _V  \  { A } )  <->  -.  x  e.  { A } )
19 velsn 3660 . . . . . . . . 9  |-  ( x  e.  { A }  <->  x  =  A )
2018, 19xchbinx 684 . . . . . . . 8  |-  ( x  e.  ( _V  \  { A } )  <->  -.  x  =  A )
2115, 20sylibr 134 . . . . . . 7  |-  ( ( A  e.  A  /\  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )  ->  x  e.  ( _V  \  { A } ) )
2221ex 115 . . . . . 6  |-  ( A  e.  A  ->  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  ->  x  e.  ( _V  \  { A } ) ) )
2322alrimiv 1898 . . . . 5  |-  ( A  e.  A  ->  A. x
( A. y ( y  e.  x  -> 
y  e.  ( _V 
\  { A }
) )  ->  x  e.  ( _V  \  { A } ) ) )
24 df-ral 2491 . . . . . . . 8  |-  ( A. y  e.  x  [
y  /  x ]
x  e.  ( _V 
\  { A }
)  <->  A. y ( y  e.  x  ->  [ y  /  x ] x  e.  ( _V  \  { A } ) ) )
25 clelsb1 2312 . . . . . . . . . 10  |-  ( [ y  /  x ]
x  e.  ( _V 
\  { A }
)  <->  y  e.  ( _V  \  { A } ) )
2625imbi2i 226 . . . . . . . . 9  |-  ( ( y  e.  x  ->  [ y  /  x ] x  e.  ( _V  \  { A }
) )  <->  ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )
2726albii 1494 . . . . . . . 8  |-  ( A. y ( y  e.  x  ->  [ y  /  x ] x  e.  ( _V  \  { A } ) )  <->  A. y
( y  e.  x  ->  y  e.  ( _V 
\  { A }
) ) )
2824, 27bitri 184 . . . . . . 7  |-  ( A. y  e.  x  [
y  /  x ]
x  e.  ( _V 
\  { A }
)  <->  A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) ) )
2928imbi1i 238 . . . . . 6  |-  ( ( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A }
)  ->  x  e.  ( _V  \  { A } ) )  <->  ( A. y ( y  e.  x  ->  y  e.  ( _V  \  { A } ) )  ->  x  e.  ( _V  \  { A } ) ) )
3029albii 1494 . . . . 5  |-  ( A. x ( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A } )  ->  x  e.  ( _V  \  { A } ) )  <->  A. x
( A. y ( y  e.  x  -> 
y  e.  ( _V 
\  { A }
) )  ->  x  e.  ( _V  \  { A } ) ) )
3123, 30sylibr 134 . . . 4  |-  ( A  e.  A  ->  A. x
( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A } )  ->  x  e.  ( _V  \  { A } ) ) )
32 ax-setind 4603 . . . 4  |-  ( A. x ( A. y  e.  x  [ y  /  x ] x  e.  ( _V  \  { A } )  ->  x  e.  ( _V  \  { A } ) )  ->  A. x  x  e.  ( _V  \  { A } ) )
3331, 32syl 14 . . 3  |-  ( A  e.  A  ->  A. x  x  e.  ( _V  \  { A } ) )
34 eleq1 2270 . . . 4  |-  ( x  =  A  ->  (
x  e.  ( _V 
\  { A }
)  <->  A  e.  ( _V  \  { A }
) ) )
3534spcgv 2867 . . 3  |-  ( A  e.  A  ->  ( A. x  x  e.  ( _V  \  { A } )  ->  A  e.  ( _V  \  { A } ) ) )
3633, 35mpd 13 . 2  |-  ( A  e.  A  ->  A  e.  ( _V  \  { A } ) )
37 neldifsnd 3775 . 2  |-  ( A  e.  A  ->  -.  A  e.  ( _V  \  { A } ) )
3836, 37pm2.65i 640 1  |-  -.  A  e.  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373   [wsb 1786    e. wcel 2178   A.wral 2486   _Vcvv 2776    \ cdif 3171   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-sn 3649
This theorem is referenced by:  ordirr  4608  elirrv  4614  sucprcreg  4615  ordsoexmid  4628  onnmin  4634  ssnel  4635  ordtri2or2exmid  4637  reg3exmidlemwe  4645  nntri2  6603  nntri3  6606  nndceq  6608  nndcel  6609  phpelm  6989  fiunsnnn  7004  onunsnss  7040  snon0  7063
  Copyright terms: Public domain W3C validator