ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexdifsn Unicode version

Theorem rexdifsn 3765
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn  |-  ( E. x  e.  ( A 
\  { B }
) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 3760 . . . 4  |-  ( x  e.  ( A  \  { B } )  <->  ( x  e.  A  /\  x  =/=  B ) )
21anbi1i 458 . . 3  |-  ( ( x  e.  ( A 
\  { B }
)  /\  ph )  <->  ( (
x  e.  A  /\  x  =/=  B )  /\  ph ) )
3 anass 401 . . 3  |-  ( ( ( x  e.  A  /\  x  =/=  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  ph ) ) )
42, 3bitri 184 . 2  |-  ( ( x  e.  ( A 
\  { B }
)  /\  ph )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  ph ) ) )
54rexbii2 2517 1  |-  ( E. x  e.  ( A 
\  { B }
) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2176    =/= wne 2376   E.wrex 2485    \ cdif 3163   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-rex 2490  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator