ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexdifsn Unicode version

Theorem rexdifsn 3800
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn  |-  ( E. x  e.  ( A 
\  { B }
) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 3795 . . . 4  |-  ( x  e.  ( A  \  { B } )  <->  ( x  e.  A  /\  x  =/=  B ) )
21anbi1i 458 . . 3  |-  ( ( x  e.  ( A 
\  { B }
)  /\  ph )  <->  ( (
x  e.  A  /\  x  =/=  B )  /\  ph ) )
3 anass 401 . . 3  |-  ( ( ( x  e.  A  /\  x  =/=  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  ph ) ) )
42, 3bitri 184 . 2  |-  ( ( x  e.  ( A 
\  { B }
)  /\  ph )  <->  ( x  e.  A  /\  (
x  =/=  B  /\  ph ) ) )
54rexbii2 2541 1  |-  ( E. x  e.  ( A 
\  { B }
) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200    =/= wne 2400   E.wrex 2509    \ cdif 3194   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-rex 2514  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator