| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neldifsnd | GIF version | ||
| Description: 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 3777 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2180 ∖ cdif 3174 {csn 3646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-v 2781 df-dif 3179 df-sn 3652 |
| This theorem is referenced by: difsnb 3790 frirrg 4418 elirr 4610 |
| Copyright terms: Public domain | W3C validator |