ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelrdva Unicode version

Theorem nelrdva 2980
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
Assertion
Ref Expression
nelrdva  |-  ( ph  ->  -.  B  e.  A
)
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2206 . 2  |-  ( (
ph  /\  B  e.  A )  ->  B  =  B )
2 eleq1 2268 . . . . . . 7  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
32anbi2d 464 . . . . . 6  |-  ( x  =  B  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  B  e.  A ) ) )
4 neeq1 2389 . . . . . 6  |-  ( x  =  B  ->  (
x  =/=  B  <->  B  =/=  B ) )
53, 4imbi12d 234 . . . . 5  |-  ( x  =  B  ->  (
( ( ph  /\  x  e.  A )  ->  x  =/=  B )  <-> 
( ( ph  /\  B  e.  A )  ->  B  =/=  B ) ) )
6 nelrdva.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
75, 6vtoclg 2833 . . . 4  |-  ( B  e.  A  ->  (
( ph  /\  B  e.  A )  ->  B  =/=  B ) )
87anabsi7 581 . . 3  |-  ( (
ph  /\  B  e.  A )  ->  B  =/=  B )
98neneqd 2397 . 2  |-  ( (
ph  /\  B  e.  A )  ->  -.  B  =  B )
101, 9pm2.65da 663 1  |-  ( ph  ->  -.  B  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator