| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelrdva | Unicode version | ||
| Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
| Ref | Expression |
|---|---|
| nelrdva.1 |
|
| Ref | Expression |
|---|---|
| nelrdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2206 |
. 2
| |
| 2 | eleq1 2268 |
. . . . . . 7
| |
| 3 | 2 | anbi2d 464 |
. . . . . 6
|
| 4 | neeq1 2389 |
. . . . . 6
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . 5
|
| 6 | nelrdva.1 |
. . . . 5
| |
| 7 | 5, 6 | vtoclg 2833 |
. . . 4
|
| 8 | 7 | anabsi7 581 |
. . 3
|
| 9 | 8 | neneqd 2397 |
. 2
|
| 10 | 1, 9 | pm2.65da 663 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |