ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelrdva Unicode version

Theorem nelrdva 2933
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
Assertion
Ref Expression
nelrdva  |-  ( ph  ->  -.  B  e.  A
)
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2166 . 2  |-  ( (
ph  /\  B  e.  A )  ->  B  =  B )
2 eleq1 2229 . . . . . . 7  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
32anbi2d 460 . . . . . 6  |-  ( x  =  B  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  B  e.  A ) ) )
4 neeq1 2349 . . . . . 6  |-  ( x  =  B  ->  (
x  =/=  B  <->  B  =/=  B ) )
53, 4imbi12d 233 . . . . 5  |-  ( x  =  B  ->  (
( ( ph  /\  x  e.  A )  ->  x  =/=  B )  <-> 
( ( ph  /\  B  e.  A )  ->  B  =/=  B ) ) )
6 nelrdva.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
75, 6vtoclg 2786 . . . 4  |-  ( B  e.  A  ->  (
( ph  /\  B  e.  A )  ->  B  =/=  B ) )
87anabsi7 571 . . 3  |-  ( (
ph  /\  B  e.  A )  ->  B  =/=  B )
98neneqd 2357 . 2  |-  ( (
ph  /\  B  e.  A )  ->  -.  B  =  B )
101, 9pm2.65da 651 1  |-  ( ph  ->  -.  B  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator