ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelrdva Unicode version

Theorem nelrdva 2971
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
Assertion
Ref Expression
nelrdva  |-  ( ph  ->  -.  B  e.  A
)
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2197 . 2  |-  ( (
ph  /\  B  e.  A )  ->  B  =  B )
2 eleq1 2259 . . . . . . 7  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
32anbi2d 464 . . . . . 6  |-  ( x  =  B  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  B  e.  A ) ) )
4 neeq1 2380 . . . . . 6  |-  ( x  =  B  ->  (
x  =/=  B  <->  B  =/=  B ) )
53, 4imbi12d 234 . . . . 5  |-  ( x  =  B  ->  (
( ( ph  /\  x  e.  A )  ->  x  =/=  B )  <-> 
( ( ph  /\  B  e.  A )  ->  B  =/=  B ) ) )
6 nelrdva.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  =/=  B )
75, 6vtoclg 2824 . . . 4  |-  ( B  e.  A  ->  (
( ph  /\  B  e.  A )  ->  B  =/=  B ) )
87anabsi7 581 . . 3  |-  ( (
ph  /\  B  e.  A )  ->  B  =/=  B )
98neneqd 2388 . 2  |-  ( (
ph  /\  B  e.  A )  ->  -.  B  =  B )
101, 9pm2.65da 662 1  |-  ( ph  ->  -.  B  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator