ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfaba1 Unicode version

Theorem nfaba1 2338
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1  |-  F/_ x { y  |  A. x ph }

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1552 . 2  |-  F/ x A. x ph
21nfab 2337 1  |-  F/_ x { y  |  A. x ph }
Colors of variables: wff set class
Syntax hints:   A.wal 1362   {cab 2175   F/_wnfc 2319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-nfc 2321
This theorem is referenced by:  nfopd  3810  nfimad  4994  nfiota1  5195  nffvd  5542
  Copyright terms: Public domain W3C validator