ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfaba1 Unicode version

Theorem nfaba1 2354
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1  |-  F/_ x { y  |  A. x ph }

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1564 . 2  |-  F/ x A. x ph
21nfab 2353 1  |-  F/_ x { y  |  A. x ph }
Colors of variables: wff set class
Syntax hints:   A.wal 1371   {cab 2191   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-nfc 2337
This theorem is referenced by:  nfopd  3836  nfimad  5031  nfiota1  5234  nffvd  5588
  Copyright terms: Public domain W3C validator