| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfaba1 | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1587 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfab 2377 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1393 {cab 2215 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-nfc 2361 |
| This theorem is referenced by: nfopd 3873 nfimad 5076 nfiota1 5279 nffvd 5638 |
| Copyright terms: Public domain | W3C validator |