| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfaba1 | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1565 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfab 2354 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1371 {cab 2192 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-nfc 2338 |
| This theorem is referenced by: nfopd 3841 nfimad 5039 nfiota1 5242 nffvd 5600 |
| Copyright terms: Public domain | W3C validator |