Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfaba1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1534 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfab 2317 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Colors of variables: wff set class |
Syntax hints: ∀wal 1346 {cab 2156 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-nfc 2301 |
This theorem is referenced by: nfopd 3782 nfimad 4962 nfiota1 5162 nffvd 5508 |
Copyright terms: Public domain | W3C validator |