ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfaba1 GIF version

Theorem nfaba1 2318
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1534 . 2 𝑥𝑥𝜑
21nfab 2317 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wal 1346  {cab 2156  wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-nfc 2301
This theorem is referenced by:  nfopd  3782  nfimad  4962  nfiota1  5162  nffvd  5508
  Copyright terms: Public domain W3C validator