Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfaba1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1529 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfab 2313 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Colors of variables: wff set class |
Syntax hints: ∀wal 1341 {cab 2151 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-nfc 2297 |
This theorem is referenced by: nfopd 3775 nfimad 4955 nfiota1 5155 nffvd 5498 |
Copyright terms: Public domain | W3C validator |