ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfaba1 GIF version

Theorem nfaba1 2355
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1565 . 2 𝑥𝑥𝜑
21nfab 2354 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wal 1371  {cab 2192  wnfc 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-nfc 2338
This theorem is referenced by:  nfopd  3841  nfimad  5039  nfiota1  5242  nffvd  5600
  Copyright terms: Public domain W3C validator