ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 Unicode version

Theorem nfiota1 5279
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1  |-  F/_ x
( iota x ph )

Proof of Theorem nfiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5278 . 2  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
2 nfaba1 2378 . . 3  |-  F/_ x { y  |  A. x ( ph  <->  x  =  y ) }
32nfuni 3893 . 2  |-  F/_ x U. { y  |  A. x ( ph  <->  x  =  y ) }
41, 3nfcxfr 2369 1  |-  F/_ x
( iota x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1393   {cab 2215   F/_wnfc 2359   U.cuni 3887   iotacio 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-sn 3672  df-uni 3888  df-iota 5277
This theorem is referenced by:  iota2df  5303  sniota  5308  nfriota1  5961  erovlem  6772
  Copyright terms: Public domain W3C validator