ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 Unicode version

Theorem nfiota1 5239
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1  |-  F/_ x
( iota x ph )

Proof of Theorem nfiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5238 . 2  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
2 nfaba1 2355 . . 3  |-  F/_ x { y  |  A. x ( ph  <->  x  =  y ) }
32nfuni 3858 . 2  |-  F/_ x U. { y  |  A. x ( ph  <->  x  =  y ) }
41, 3nfcxfr 2346 1  |-  F/_ x
( iota x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   {cab 2192   F/_wnfc 2336   U.cuni 3852   iotacio 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-sn 3640  df-uni 3853  df-iota 5237
This theorem is referenced by:  iota2df  5262  sniota  5267  nfriota1  5914  erovlem  6721
  Copyright terms: Public domain W3C validator