ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 Unicode version

Theorem nfiota1 5221
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1  |-  F/_ x
( iota x ph )

Proof of Theorem nfiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5220 . 2  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
2 nfaba1 2345 . . 3  |-  F/_ x { y  |  A. x ( ph  <->  x  =  y ) }
32nfuni 3845 . 2  |-  F/_ x U. { y  |  A. x ( ph  <->  x  =  y ) }
41, 3nfcxfr 2336 1  |-  F/_ x
( iota x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   {cab 2182   F/_wnfc 2326   U.cuni 3839   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-sn 3628  df-uni 3840  df-iota 5219
This theorem is referenced by:  iota2df  5244  sniota  5249  nfriota1  5885  erovlem  6686
  Copyright terms: Public domain W3C validator