ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 Unicode version

Theorem nfiota1 5217
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1  |-  F/_ x
( iota x ph )

Proof of Theorem nfiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5216 . 2  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
2 nfaba1 2342 . . 3  |-  F/_ x { y  |  A. x ( ph  <->  x  =  y ) }
32nfuni 3841 . 2  |-  F/_ x U. { y  |  A. x ( ph  <->  x  =  y ) }
41, 3nfcxfr 2333 1  |-  F/_ x
( iota x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   {cab 2179   F/_wnfc 2323   U.cuni 3835   iotacio 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-sn 3624  df-uni 3836  df-iota 5215
This theorem is referenced by:  iota2df  5240  sniota  5245  nfriota1  5881  erovlem  6681
  Copyright terms: Public domain W3C validator