ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiota1 Unicode version

Theorem nfiota1 5172
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1  |-  F/_ x
( iota x ph )

Proof of Theorem nfiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5171 . 2  |-  ( iota
x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
2 nfaba1 2323 . . 3  |-  F/_ x { y  |  A. x ( ph  <->  x  =  y ) }
32nfuni 3811 . 2  |-  F/_ x U. { y  |  A. x ( ph  <->  x  =  y ) }
41, 3nfcxfr 2314 1  |-  F/_ x
( iota x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351   {cab 2161   F/_wnfc 2304   U.cuni 3805   iotacio 5168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-sn 3595  df-uni 3806  df-iota 5170
This theorem is referenced by:  iota2df  5194  sniota  5199  nfriota1  5828  erovlem  6617
  Copyright terms: Public domain W3C validator