ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadw Unicode version

Theorem nfiotadw 5254
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
nfiotadw.1  |-  F/ y
ph
nfiotadw.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfiotadw  |-  ( ph  -> 
F/_ x ( iota y ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem nfiotadw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5252 . 2  |-  ( iota y ps )  = 
U. { z  | 
A. y ( ps  <->  y  =  z ) }
2 nfv 1552 . . . 4  |-  F/ z
ph
3 nfiotadw.1 . . . . 5  |-  F/ y
ph
4 nfiotadw.2 . . . . . 6  |-  ( ph  ->  F/ x ps )
5 nfcv 2350 . . . . . . . 8  |-  F/_ x
y
6 nfcv 2350 . . . . . . . 8  |-  F/_ x
z
75, 6nfeq 2358 . . . . . . 7  |-  F/ x  y  =  z
87a1i 9 . . . . . 6  |-  ( ph  ->  F/ x  y  =  z )
94, 8nfbid 1612 . . . . 5  |-  ( ph  ->  F/ x ( ps  <->  y  =  z ) )
103, 9nfald 1784 . . . 4  |-  ( ph  ->  F/ x A. y
( ps  <->  y  =  z ) )
112, 10nfabd 2370 . . 3  |-  ( ph  -> 
F/_ x { z  |  A. y ( ps  <->  y  =  z ) } )
1211nfunid 3871 . 2  |-  ( ph  -> 
F/_ x U. {
z  |  A. y
( ps  <->  y  =  z ) } )
131, 12nfcxfrd 2348 1  |-  ( ph  -> 
F/_ x ( iota y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1484   {cab 2193   F/_wnfc 2337   U.cuni 3864   iotacio 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-sn 3649  df-uni 3865  df-iota 5251
This theorem is referenced by:  nfiotaw  5255  nfriotadxy  5931
  Copyright terms: Public domain W3C validator