ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadw Unicode version

Theorem nfiotadw 5156
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
nfiotadw.1  |-  F/ y
ph
nfiotadw.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfiotadw  |-  ( ph  -> 
F/_ x ( iota y ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem nfiotadw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5154 . 2  |-  ( iota y ps )  = 
U. { z  | 
A. y ( ps  <->  y  =  z ) }
2 nfv 1516 . . . 4  |-  F/ z
ph
3 nfiotadw.1 . . . . 5  |-  F/ y
ph
4 nfiotadw.2 . . . . . 6  |-  ( ph  ->  F/ x ps )
5 nfcv 2308 . . . . . . . 8  |-  F/_ x
y
6 nfcv 2308 . . . . . . . 8  |-  F/_ x
z
75, 6nfeq 2316 . . . . . . 7  |-  F/ x  y  =  z
87a1i 9 . . . . . 6  |-  ( ph  ->  F/ x  y  =  z )
94, 8nfbid 1576 . . . . 5  |-  ( ph  ->  F/ x ( ps  <->  y  =  z ) )
103, 9nfald 1748 . . . 4  |-  ( ph  ->  F/ x A. y
( ps  <->  y  =  z ) )
112, 10nfabd 2328 . . 3  |-  ( ph  -> 
F/_ x { z  |  A. y ( ps  <->  y  =  z ) } )
1211nfunid 3796 . 2  |-  ( ph  -> 
F/_ x U. {
z  |  A. y
( ps  <->  y  =  z ) } )
131, 12nfcxfrd 2306 1  |-  ( ph  -> 
F/_ x ( iota y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448   {cab 2151   F/_wnfc 2295   U.cuni 3789   iotacio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-sn 3582  df-uni 3790  df-iota 5153
This theorem is referenced by:  nfiotaw  5157  nfriotadxy  5806
  Copyright terms: Public domain W3C validator