Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadw Unicode version

 Description: Bound-variable hypothesis builder for the class. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
Assertion
Ref Expression
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5089 . 2
2 nfv 1508 . . . 4
3 nfiotadw.1 . . . . 5
4 nfiotadw.2 . . . . . 6
5 nfcv 2281 . . . . . . . 8
6 nfcv 2281 . . . . . . . 8
75, 6nfeq 2289 . . . . . . 7
87a1i 9 . . . . . 6
94, 8nfbid 1567 . . . . 5
103, 9nfald 1733 . . . 4
112, 10nfabd 2300 . . 3
1211nfunid 3743 . 2
131, 12nfcxfrd 2279 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1329   wceq 1331  wnf 1436  cab 2125  wnfc 2268  cuni 3736  cio 5086 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-sn 3533  df-uni 3737  df-iota 5088 This theorem is referenced by:  nfiotaw  5092  nfriotadxy  5738
 Copyright terms: Public domain W3C validator