ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadw Unicode version

Theorem nfiotadw 5163
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
nfiotadw.1  |-  F/ y
ph
nfiotadw.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfiotadw  |-  ( ph  -> 
F/_ x ( iota y ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem nfiotadw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5161 . 2  |-  ( iota y ps )  = 
U. { z  | 
A. y ( ps  <->  y  =  z ) }
2 nfv 1521 . . . 4  |-  F/ z
ph
3 nfiotadw.1 . . . . 5  |-  F/ y
ph
4 nfiotadw.2 . . . . . 6  |-  ( ph  ->  F/ x ps )
5 nfcv 2312 . . . . . . . 8  |-  F/_ x
y
6 nfcv 2312 . . . . . . . 8  |-  F/_ x
z
75, 6nfeq 2320 . . . . . . 7  |-  F/ x  y  =  z
87a1i 9 . . . . . 6  |-  ( ph  ->  F/ x  y  =  z )
94, 8nfbid 1581 . . . . 5  |-  ( ph  ->  F/ x ( ps  <->  y  =  z ) )
103, 9nfald 1753 . . . 4  |-  ( ph  ->  F/ x A. y
( ps  <->  y  =  z ) )
112, 10nfabd 2332 . . 3  |-  ( ph  -> 
F/_ x { z  |  A. y ( ps  <->  y  =  z ) } )
1211nfunid 3803 . 2  |-  ( ph  -> 
F/_ x U. {
z  |  A. y
( ps  <->  y  =  z ) } )
131, 12nfcxfrd 2310 1  |-  ( ph  -> 
F/_ x ( iota y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   F/wnf 1453   {cab 2156   F/_wnfc 2299   U.cuni 3796   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-sn 3589  df-uni 3797  df-iota 5160
This theorem is referenced by:  nfiotaw  5164  nfriotadxy  5817
  Copyright terms: Public domain W3C validator