ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeqd Unicode version

Theorem nfeqd 2365
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeqd  |-  ( ph  ->  F/ x  A  =  B )

Proof of Theorem nfeqd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2201 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1552 . . 3  |-  F/ y
ph
3 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
43nfcrd 2364 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
5 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2364 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
74, 6nfbid 1612 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  <->  y  e.  B ) )
82, 7nfald 1784 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  <->  y  e.  B ) )
91, 8nfxfrd 1499 1  |-  ( ph  ->  F/ x  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1484    e. wcel 2178   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-cleq 2200  df-nfc 2339
This theorem is referenced by:  nfeld  2366  nfned  2472  vtoclgft  2828  sbcralt  3082  sbcrext  3083  csbiebt  3141  dfnfc2  3882  eusvnfb  4519  eusv2i  4520  iota2df  5276  riota5f  5947
  Copyright terms: Public domain W3C validator