ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeqd Unicode version

Theorem nfeqd 2363
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeqd  |-  ( ph  ->  F/ x  A  =  B )

Proof of Theorem nfeqd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2199 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1551 . . 3  |-  F/ y
ph
3 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
43nfcrd 2362 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
5 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2362 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
74, 6nfbid 1611 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  <->  y  e.  B ) )
82, 7nfald 1783 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  <->  y  e.  B ) )
91, 8nfxfrd 1498 1  |-  ( ph  ->  F/ x  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1483    e. wcel 2176   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-cleq 2198  df-nfc 2337
This theorem is referenced by:  nfeld  2364  nfned  2470  vtoclgft  2823  sbcralt  3075  sbcrext  3076  csbiebt  3133  dfnfc2  3868  eusvnfb  4502  eusv2i  4503  iota2df  5258  riota5f  5926
  Copyright terms: Public domain W3C validator