| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeqd | Unicode version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 |
|
| nfeqd.2 |
|
| Ref | Expression |
|---|---|
| nfeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2199 |
. 2
| |
| 2 | nfv 1551 |
. . 3
| |
| 3 | nfeqd.1 |
. . . . 5
| |
| 4 | 3 | nfcrd 2362 |
. . . 4
|
| 5 | nfeqd.2 |
. . . . 5
| |
| 6 | 5 | nfcrd 2362 |
. . . 4
|
| 7 | 4, 6 | nfbid 1611 |
. . 3
|
| 8 | 2, 7 | nfald 1783 |
. 2
|
| 9 | 1, 8 | nfxfrd 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-nfc 2337 |
| This theorem is referenced by: nfeld 2364 nfned 2470 vtoclgft 2823 sbcralt 3075 sbcrext 3076 csbiebt 3133 dfnfc2 3868 eusvnfb 4502 eusv2i 4503 iota2df 5258 riota5f 5926 |
| Copyright terms: Public domain | W3C validator |