ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeqd Unicode version

Theorem nfeqd 2387
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeqd  |-  ( ph  ->  F/ x  A  =  B )

Proof of Theorem nfeqd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2223 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1574 . . 3  |-  F/ y
ph
3 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
43nfcrd 2386 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
5 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2386 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
74, 6nfbid 1634 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  <->  y  e.  B ) )
82, 7nfald 1806 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  <->  y  e.  B ) )
91, 8nfxfrd 1521 1  |-  ( ph  ->  F/ x  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    = wceq 1395   F/wnf 1506    e. wcel 2200   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-cleq 2222  df-nfc 2361
This theorem is referenced by:  nfeld  2388  nfned  2494  vtoclgft  2851  sbcralt  3105  sbcrext  3106  csbiebt  3164  dfnfc2  3906  eusvnfb  4545  eusv2i  4546  iota2df  5304  riotaeqimp  5979  riota5f  5981
  Copyright terms: Public domain W3C validator