Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeqd | Unicode version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | |
nfeqd.2 |
Ref | Expression |
---|---|
nfeqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2169 | . 2 | |
2 | nfv 1526 | . . 3 | |
3 | nfeqd.1 | . . . . 5 | |
4 | 3 | nfcrd 2331 | . . . 4 |
5 | nfeqd.2 | . . . . 5 | |
6 | 5 | nfcrd 2331 | . . . 4 |
7 | 4, 6 | nfbid 1586 | . . 3 |
8 | 2, 7 | nfald 1758 | . 2 |
9 | 1, 8 | nfxfrd 1473 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wnf 1458 wcel 2146 wnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-cleq 2168 df-nfc 2306 |
This theorem is referenced by: nfeld 2333 nfned 2439 vtoclgft 2785 sbcralt 3037 sbcrext 3038 csbiebt 3094 dfnfc2 3823 eusvnfb 4448 eusv2i 4449 iota2df 5194 riota5f 5845 |
Copyright terms: Public domain | W3C validator |