ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqdf Unicode version

Theorem nfceqdf 2338
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1  |-  F/ x ph
nfceqdf.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
nfceqdf  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )

Proof of Theorem nfceqdf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4  |-  F/ x ph
2 nfceqdf.2 . . . . 5  |-  ( ph  ->  A  =  B )
32eleq2d 2266 . . . 4  |-  ( ph  ->  ( y  e.  A  <->  y  e.  B ) )
41, 3nfbidf 1553 . . 3  |-  ( ph  ->  ( F/ x  y  e.  A  <->  F/ x  y  e.  B )
)
54albidv 1838 . 2  |-  ( ph  ->  ( A. y F/ x  y  e.  A  <->  A. y F/ x  y  e.  B ) )
6 df-nfc 2328 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
7 df-nfc 2328 . 2  |-  ( F/_ x B  <->  A. y F/ x  y  e.  B )
85, 6, 73bitr4g 223 1  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   F/wnf 1474    e. wcel 2167   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  nfopd  3825  dfnfc2  3857  nfimad  5018  nffvd  5570
  Copyright terms: Public domain W3C validator