ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqdf Unicode version

Theorem nfceqdf 2335
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1  |-  F/ x ph
nfceqdf.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
nfceqdf  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )

Proof of Theorem nfceqdf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4  |-  F/ x ph
2 nfceqdf.2 . . . . 5  |-  ( ph  ->  A  =  B )
32eleq2d 2263 . . . 4  |-  ( ph  ->  ( y  e.  A  <->  y  e.  B ) )
41, 3nfbidf 1550 . . 3  |-  ( ph  ->  ( F/ x  y  e.  A  <->  F/ x  y  e.  B )
)
54albidv 1835 . 2  |-  ( ph  ->  ( A. y F/ x  y  e.  A  <->  A. y F/ x  y  e.  B ) )
6 df-nfc 2325 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
7 df-nfc 2325 . 2  |-  ( F/_ x B  <->  A. y F/ x  y  e.  B )
85, 6, 73bitr4g 223 1  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   F/wnf 1471    e. wcel 2164   F/_wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  nfopd  3821  dfnfc2  3853  nfimad  5014  nffvd  5566
  Copyright terms: Public domain W3C validator