| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfceqdf | Unicode version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfceqdf.1 |
|
| nfceqdf.2 |
|
| Ref | Expression |
|---|---|
| nfceqdf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqdf.1 |
. . . 4
| |
| 2 | nfceqdf.2 |
. . . . 5
| |
| 3 | 2 | eleq2d 2277 |
. . . 4
|
| 4 | 1, 3 | nfbidf 1563 |
. . 3
|
| 5 | 4 | albidv 1848 |
. 2
|
| 6 | df-nfc 2339 |
. 2
| |
| 7 | df-nfc 2339 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: nfopd 3850 dfnfc2 3882 nfimad 5050 nffvd 5611 |
| Copyright terms: Public domain | W3C validator |