| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfceqdf | Unicode version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfceqdf.1 |
|
| nfceqdf.2 |
|
| Ref | Expression |
|---|---|
| nfceqdf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqdf.1 |
. . . 4
| |
| 2 | nfceqdf.2 |
. . . . 5
| |
| 3 | 2 | eleq2d 2266 |
. . . 4
|
| 4 | 1, 3 | nfbidf 1553 |
. . 3
|
| 5 | 4 | albidv 1838 |
. 2
|
| 6 | df-nfc 2328 |
. 2
| |
| 7 | df-nfc 2328 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfopd 3825 dfnfc2 3857 nfimad 5018 nffvd 5570 |
| Copyright terms: Public domain | W3C validator |