ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqdf Unicode version

Theorem nfceqdf 2298
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1  |-  F/ x ph
nfceqdf.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
nfceqdf  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )

Proof of Theorem nfceqdf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4  |-  F/ x ph
2 nfceqdf.2 . . . . 5  |-  ( ph  ->  A  =  B )
32eleq2d 2227 . . . 4  |-  ( ph  ->  ( y  e.  A  <->  y  e.  B ) )
41, 3nfbidf 1519 . . 3  |-  ( ph  ->  ( F/ x  y  e.  A  <->  F/ x  y  e.  B )
)
54albidv 1804 . 2  |-  ( ph  ->  ( A. y F/ x  y  e.  A  <->  A. y F/ x  y  e.  B ) )
6 df-nfc 2288 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
7 df-nfc 2288 . 2  |-  ( F/_ x B  <->  A. y F/ x  y  e.  B )
85, 6, 73bitr4g 222 1  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1333    = wceq 1335   F/wnf 1440    e. wcel 2128   F/_wnfc 2286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-cleq 2150  df-clel 2153  df-nfc 2288
This theorem is referenced by:  nfopd  3758  dfnfc2  3790  nfimad  4936  nffvd  5479
  Copyright terms: Public domain W3C validator