| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfceqdf | Unicode version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfceqdf.1 | 
 | 
| nfceqdf.2 | 
 | 
| Ref | Expression | 
|---|---|
| nfceqdf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfceqdf.1 | 
. . . 4
 | |
| 2 | nfceqdf.2 | 
. . . . 5
 | |
| 3 | 2 | eleq2d 2266 | 
. . . 4
 | 
| 4 | 1, 3 | nfbidf 1553 | 
. . 3
 | 
| 5 | 4 | albidv 1838 | 
. 2
 | 
| 6 | df-nfc 2328 | 
. 2
 | |
| 7 | df-nfc 2328 | 
. 2
 | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 | 
| This theorem is referenced by: nfopd 3825 dfnfc2 3857 nfimad 5018 nffvd 5570 | 
| Copyright terms: Public domain | W3C validator |