Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnfc2 | Unicode version |
Description: An alternate statement of the effective freeness of a class , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
dfnfc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2309 | . . . 4 | |
2 | id 19 | . . . 4 | |
3 | 1, 2 | nfeqd 2323 | . . 3 |
4 | 3 | alrimiv 1862 | . 2 |
5 | simpr 109 | . . . . . 6 | |
6 | df-nfc 2297 | . . . . . . 7 | |
7 | velsn 3593 | . . . . . . . . 9 | |
8 | 7 | nfbii 1461 | . . . . . . . 8 |
9 | 8 | albii 1458 | . . . . . . 7 |
10 | 6, 9 | bitri 183 | . . . . . 6 |
11 | 5, 10 | sylibr 133 | . . . . 5 |
12 | 11 | nfunid 3796 | . . . 4 |
13 | nfa1 1529 | . . . . . 6 | |
14 | nfnf1 1532 | . . . . . . 7 | |
15 | 14 | nfal 1564 | . . . . . 6 |
16 | 13, 15 | nfan 1553 | . . . . 5 |
17 | unisng 3806 | . . . . . . 7 | |
18 | 17 | sps 1525 | . . . . . 6 |
19 | 18 | adantr 274 | . . . . 5 |
20 | 16, 19 | nfceqdf 2307 | . . . 4 |
21 | 12, 20 | mpbid 146 | . . 3 |
22 | 21 | ex 114 | . 2 |
23 | 4, 22 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wnf 1448 wcel 2136 wnfc 2295 csn 3576 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: eusv2nf 4434 |
Copyright terms: Public domain | W3C validator |