Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnfc2 | Unicode version |
Description: An alternate statement of the effective freeness of a class , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
dfnfc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2318 | . . . 4 | |
2 | id 19 | . . . 4 | |
3 | 1, 2 | nfeqd 2332 | . . 3 |
4 | 3 | alrimiv 1872 | . 2 |
5 | simpr 110 | . . . . . 6 | |
6 | df-nfc 2306 | . . . . . . 7 | |
7 | velsn 3606 | . . . . . . . . 9 | |
8 | 7 | nfbii 1471 | . . . . . . . 8 |
9 | 8 | albii 1468 | . . . . . . 7 |
10 | 6, 9 | bitri 184 | . . . . . 6 |
11 | 5, 10 | sylibr 134 | . . . . 5 |
12 | 11 | nfunid 3812 | . . . 4 |
13 | nfa1 1539 | . . . . . 6 | |
14 | nfnf1 1542 | . . . . . . 7 | |
15 | 14 | nfal 1574 | . . . . . 6 |
16 | 13, 15 | nfan 1563 | . . . . 5 |
17 | unisng 3822 | . . . . . . 7 | |
18 | 17 | sps 1535 | . . . . . 6 |
19 | 18 | adantr 276 | . . . . 5 |
20 | 16, 19 | nfceqdf 2316 | . . . 4 |
21 | 12, 20 | mpbid 147 | . . 3 |
22 | 21 | ex 115 | . 2 |
23 | 4, 22 | impbid2 143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wceq 1353 wnf 1458 wcel 2146 wnfc 2304 csn 3589 cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 |
This theorem is referenced by: eusv2nf 4450 |
Copyright terms: Public domain | W3C validator |