| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnfc2 | Unicode version | ||
| Description: An alternate statement of
the effective freeness of a class |
| Ref | Expression |
|---|---|
| dfnfc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2351 |
. . . 4
| |
| 2 | id 19 |
. . . 4
| |
| 3 | 1, 2 | nfeqd 2365 |
. . 3
|
| 4 | 3 | alrimiv 1898 |
. 2
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | df-nfc 2339 |
. . . . . . 7
| |
| 7 | velsn 3660 |
. . . . . . . . 9
| |
| 8 | 7 | nfbii 1497 |
. . . . . . . 8
|
| 9 | 8 | albii 1494 |
. . . . . . 7
|
| 10 | 6, 9 | bitri 184 |
. . . . . 6
|
| 11 | 5, 10 | sylibr 134 |
. . . . 5
|
| 12 | 11 | nfunid 3871 |
. . . 4
|
| 13 | nfa1 1565 |
. . . . . 6
| |
| 14 | nfnf1 1568 |
. . . . . . 7
| |
| 15 | 14 | nfal 1600 |
. . . . . 6
|
| 16 | 13, 15 | nfan 1589 |
. . . . 5
|
| 17 | unisng 3881 |
. . . . . . 7
| |
| 18 | 17 | sps 1561 |
. . . . . 6
|
| 19 | 18 | adantr 276 |
. . . . 5
|
| 20 | 16, 19 | nfceqdf 2349 |
. . . 4
|
| 21 | 12, 20 | mpbid 147 |
. . 3
|
| 22 | 21 | ex 115 |
. 2
|
| 23 | 4, 22 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 |
| This theorem is referenced by: eusv2nf 4521 |
| Copyright terms: Public domain | W3C validator |