| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnfc2 | Unicode version | ||
| Description: An alternate statement of
the effective freeness of a class |
| Ref | Expression |
|---|---|
| dfnfc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2373 |
. . . 4
| |
| 2 | id 19 |
. . . 4
| |
| 3 | 1, 2 | nfeqd 2387 |
. . 3
|
| 4 | 3 | alrimiv 1920 |
. 2
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | df-nfc 2361 |
. . . . . . 7
| |
| 7 | velsn 3683 |
. . . . . . . . 9
| |
| 8 | 7 | nfbii 1519 |
. . . . . . . 8
|
| 9 | 8 | albii 1516 |
. . . . . . 7
|
| 10 | 6, 9 | bitri 184 |
. . . . . 6
|
| 11 | 5, 10 | sylibr 134 |
. . . . 5
|
| 12 | 11 | nfunid 3895 |
. . . 4
|
| 13 | nfa1 1587 |
. . . . . 6
| |
| 14 | nfnf1 1590 |
. . . . . . 7
| |
| 15 | 14 | nfal 1622 |
. . . . . 6
|
| 16 | 13, 15 | nfan 1611 |
. . . . 5
|
| 17 | unisng 3905 |
. . . . . . 7
| |
| 18 | 17 | sps 1583 |
. . . . . 6
|
| 19 | 18 | adantr 276 |
. . . . 5
|
| 20 | 16, 19 | nfceqdf 2371 |
. . . 4
|
| 21 | 12, 20 | mpbid 147 |
. . 3
|
| 22 | 21 | ex 115 |
. 2
|
| 23 | 4, 22 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3889 |
| This theorem is referenced by: eusv2nf 4547 |
| Copyright terms: Public domain | W3C validator |