ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsb2g Unicode version

Theorem sbccsb2g 3110
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
sbccsb2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )

Proof of Theorem sbccsb2g
StepHypRef Expression
1 abid 2181 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21sbcbii 3045 . 2  |-  ( [. A  /  x ]. x  e.  { x  |  ph } 
<-> 
[. A  /  x ]. ph )
3 sbcel12g 3095 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  [_ A  /  x ]_ x  e.  [_ A  /  x ]_ {
x  |  ph }
) )
4 csbvarg 3108 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )
54eleq1d 2262 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ x  e.  [_ A  /  x ]_ { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
63, 5bitrd 188 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
72, 6bitr3id 194 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   {cab 2179   [.wsbc 2985   [_csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator