ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsb2g Unicode version

Theorem sbccsb2g 3075
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
sbccsb2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )

Proof of Theorem sbccsb2g
StepHypRef Expression
1 abid 2153 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21sbcbii 3010 . 2  |-  ( [. A  /  x ]. x  e.  { x  |  ph } 
<-> 
[. A  /  x ]. ph )
3 sbcel12g 3060 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  [_ A  /  x ]_ x  e.  [_ A  /  x ]_ {
x  |  ph }
) )
4 csbvarg 3073 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )
54eleq1d 2235 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ x  e.  [_ A  /  x ]_ { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
63, 5bitrd 187 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
72, 6bitr3id 193 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   {cab 2151   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator