ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbccsb2g Unicode version

Theorem sbccsb2g 3099
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
sbccsb2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )

Proof of Theorem sbccsb2g
StepHypRef Expression
1 abid 2175 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21sbcbii 3034 . 2  |-  ( [. A  /  x ]. x  e.  { x  |  ph } 
<-> 
[. A  /  x ]. ph )
3 sbcel12g 3084 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  [_ A  /  x ]_ x  e.  [_ A  /  x ]_ {
x  |  ph }
) )
4 csbvarg 3097 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )
54eleq1d 2256 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ x  e.  [_ A  /  x ]_ { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
63, 5bitrd 188 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
72, 6bitr3id 194 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2158   {cab 2173   [.wsbc 2974   [_csb 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-sbc 2975  df-csb 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator