Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcsb1d | GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1d.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfcsb1d | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3046 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | nfv 1516 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcsb1d.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfsbc1d 2967 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦 ∈ 𝐵) |
5 | 2, 4 | nfabd 2328 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
6 | 1, 5 | nfcxfrd 2306 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: nfcsb1 3077 |
Copyright terms: Public domain | W3C validator |