| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcsb1d | GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1d.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfcsb1d | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3085 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcsb1d.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfsbc1d 3006 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦 ∈ 𝐵) |
| 5 | 2, 4 | nfabd 2359 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 6 | 1, 5 | nfcxfrd 2337 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 [wsbc 2989 ⦋csb 3084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: nfcsb1 3116 |
| Copyright terms: Public domain | W3C validator |