ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsb1d GIF version

Theorem nfcsb1d 3089
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfcsb1d.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcsb1d (𝜑𝑥𝐴 / 𝑥𝐵)

Proof of Theorem nfcsb1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3059 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfv 1528 . . 3 𝑦𝜑
3 nfcsb1d.1 . . . 4 (𝜑𝑥𝐴)
43nfsbc1d 2980 . . 3 (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦𝐵)
52, 4nfabd 2339 . 2 (𝜑𝑥{𝑦[𝐴 / 𝑥]𝑦𝐵})
61, 5nfcxfrd 2317 1 (𝜑𝑥𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  {cab 2163  wnfc 2306  [wsbc 2963  csb 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-sbc 2964  df-csb 3059
This theorem is referenced by:  nfcsb1  3090
  Copyright terms: Public domain W3C validator