| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfmod | GIF version | ||
| Description: Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| nfeud.1 | ⊢ Ⅎ𝑦𝜑 |
| nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfmod | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2049 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
| 2 | nfeud.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfeud.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 2, 3 | nfexd 1775 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| 5 | 2, 3 | nfeud 2061 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
| 6 | 4, 5 | nfimd 1599 | . 2 ⊢ (𝜑 → Ⅎ𝑥(∃𝑦𝜓 → ∃!𝑦𝜓)) |
| 7 | 1, 6 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: nfmo 2065 |
| Copyright terms: Public domain | W3C validator |