Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfmod | GIF version |
Description: Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
nfeud.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfmod | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2023 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
2 | nfeud.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeud.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 2, 3 | nfexd 1754 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
5 | 2, 3 | nfeud 2035 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
6 | 4, 5 | nfimd 1578 | . 2 ⊢ (𝜑 → Ⅎ𝑥(∃𝑦𝜓 → ∃!𝑦𝜓)) |
7 | 1, 6 | nfxfrd 1468 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: nfmo 2039 |
Copyright terms: Public domain | W3C validator |