ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmod GIF version

Theorem nfmod 2074
Description: Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud.1 𝑦𝜑
nfeud.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfmod (𝜑 → Ⅎ𝑥∃*𝑦𝜓)

Proof of Theorem nfmod
StepHypRef Expression
1 df-mo 2061 . 2 (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
2 nfeud.1 . . . 4 𝑦𝜑
3 nfeud.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
42, 3nfexd 1787 . . 3 (𝜑 → Ⅎ𝑥𝑦𝜓)
52, 3nfeud 2073 . . 3 (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
64, 5nfimd 1611 . 2 (𝜑 → Ⅎ𝑥(∃𝑦𝜓 → ∃!𝑦𝜓))
71, 6nfxfrd 1501 1 (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1486  wex 1518  ∃!weu 2057  ∃*wmo 2058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061
This theorem is referenced by:  nfmo  2077
  Copyright terms: Public domain W3C validator