ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfne GIF version

Theorem nfne 2433
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1 𝑥𝐴
nfne.2 𝑥𝐵
Assertion
Ref Expression
nfne 𝑥 𝐴𝐵

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2341 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfne.1 . . . 4 𝑥𝐴
3 nfne.2 . . . 4 𝑥𝐵
42, 3nfeq 2320 . . 3 𝑥 𝐴 = 𝐵
54nfn 1651 . 2 𝑥 ¬ 𝐴 = 𝐵
61, 5nfxfr 1467 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1348  wnf 1453  wnfc 2299  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator