ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfne GIF version

Theorem nfne 2469
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1 𝑥𝐴
nfne.2 𝑥𝐵
Assertion
Ref Expression
nfne 𝑥 𝐴𝐵

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2377 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfne.1 . . . 4 𝑥𝐴
3 nfne.2 . . . 4 𝑥𝐵
42, 3nfeq 2356 . . 3 𝑥 𝐴 = 𝐵
54nfn 1681 . 2 𝑥 ¬ 𝐴 = 𝐵
61, 5nfxfr 1497 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wnf 1483  wnfc 2335  wne 2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator