ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel Unicode version

Theorem nfel 2359
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfel  |-  F/ x  A  e.  B

Proof of Theorem nfel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-clel 2203 . 2  |-  ( A  e.  B  <->  E. z
( z  =  A  /\  z  e.  B
) )
2 nfcv 2350 . . . . 5  |-  F/_ x
z
3 nfnfc.1 . . . . 5  |-  F/_ x A
42, 3nfeq 2358 . . . 4  |-  F/ x  z  =  A
5 nfeq.2 . . . . 5  |-  F/_ x B
65nfcri 2344 . . . 4  |-  F/ x  z  e.  B
74, 6nfan 1589 . . 3  |-  F/ x
( z  =  A  /\  z  e.  B
)
87nfex 1661 . 2  |-  F/ x E. z ( z  =  A  /\  z  e.  B )
91, 8nfxfr 1498 1  |-  F/ x  A  e.  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   F/wnf 1484   E.wex 1516    e. wcel 2178   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339
This theorem is referenced by:  nfel1  2361  nfel2  2363  nfnel  2480  elabgf  2922  elrabf  2934  sbcel12g  3116  nfdisjv  4047  rabxfrd  4534  ffnfvf  5762  mptelixpg  6844  elabgft1  15914  elabgf2  15916  bj-rspgt  15922
  Copyright terms: Public domain W3C validator