ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel Unicode version

Theorem nfel 2381
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfel  |-  F/ x  A  e.  B

Proof of Theorem nfel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-clel 2225 . 2  |-  ( A  e.  B  <->  E. z
( z  =  A  /\  z  e.  B
) )
2 nfcv 2372 . . . . 5  |-  F/_ x
z
3 nfnfc.1 . . . . 5  |-  F/_ x A
42, 3nfeq 2380 . . . 4  |-  F/ x  z  =  A
5 nfeq.2 . . . . 5  |-  F/_ x B
65nfcri 2366 . . . 4  |-  F/ x  z  e.  B
74, 6nfan 1611 . . 3  |-  F/ x
( z  =  A  /\  z  e.  B
)
87nfex 1683 . 2  |-  F/ x E. z ( z  =  A  /\  z  e.  B )
91, 8nfxfr 1520 1  |-  F/ x  A  e.  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   F/wnf 1506   E.wex 1538    e. wcel 2200   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  nfel1  2383  nfel2  2385  nfnel  2502  elabgf  2945  elrabf  2957  sbcel12g  3139  nfdisjv  4071  rabxfrd  4560  ffnfvf  5794  mptelixpg  6881  elabgft1  16142  elabgf2  16144  bj-rspgt  16150
  Copyright terms: Public domain W3C validator