ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel Unicode version

Theorem nfel 2357
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfel  |-  F/ x  A  e.  B

Proof of Theorem nfel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-clel 2201 . 2  |-  ( A  e.  B  <->  E. z
( z  =  A  /\  z  e.  B
) )
2 nfcv 2348 . . . . 5  |-  F/_ x
z
3 nfnfc.1 . . . . 5  |-  F/_ x A
42, 3nfeq 2356 . . . 4  |-  F/ x  z  =  A
5 nfeq.2 . . . . 5  |-  F/_ x B
65nfcri 2342 . . . 4  |-  F/ x  z  e.  B
74, 6nfan 1588 . . 3  |-  F/ x
( z  =  A  /\  z  e.  B
)
87nfex 1660 . 2  |-  F/ x E. z ( z  =  A  /\  z  e.  B )
91, 8nfxfr 1497 1  |-  F/ x  A  e.  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   F/wnf 1483   E.wex 1515    e. wcel 2176   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337
This theorem is referenced by:  nfel1  2359  nfel2  2361  nfnel  2478  elabgf  2915  elrabf  2927  sbcel12g  3108  nfdisjv  4033  rabxfrd  4516  ffnfvf  5739  mptelixpg  6821  elabgft1  15714  elabgf2  15716  bj-rspgt  15722
  Copyright terms: Public domain W3C validator