ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel Unicode version

Theorem nfel 2348
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfel  |-  F/ x  A  e.  B

Proof of Theorem nfel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-clel 2192 . 2  |-  ( A  e.  B  <->  E. z
( z  =  A  /\  z  e.  B
) )
2 nfcv 2339 . . . . 5  |-  F/_ x
z
3 nfnfc.1 . . . . 5  |-  F/_ x A
42, 3nfeq 2347 . . . 4  |-  F/ x  z  =  A
5 nfeq.2 . . . . 5  |-  F/_ x B
65nfcri 2333 . . . 4  |-  F/ x  z  e.  B
74, 6nfan 1579 . . 3  |-  F/ x
( z  =  A  /\  z  e.  B
)
87nfex 1651 . 2  |-  F/ x E. z ( z  =  A  /\  z  e.  B )
91, 8nfxfr 1488 1  |-  F/ x  A  e.  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   F/wnf 1474   E.wex 1506    e. wcel 2167   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  nfel1  2350  nfel2  2352  nfnel  2469  elabgf  2906  elrabf  2918  sbcel12g  3099  nfdisjv  4022  rabxfrd  4504  ffnfvf  5721  mptelixpg  6793  elabgft1  15424  elabgf2  15426  bj-rspgt  15432
  Copyright terms: Public domain W3C validator