ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel Unicode version

Theorem nfel 2345
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfel  |-  F/ x  A  e.  B

Proof of Theorem nfel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-clel 2189 . 2  |-  ( A  e.  B  <->  E. z
( z  =  A  /\  z  e.  B
) )
2 nfcv 2336 . . . . 5  |-  F/_ x
z
3 nfnfc.1 . . . . 5  |-  F/_ x A
42, 3nfeq 2344 . . . 4  |-  F/ x  z  =  A
5 nfeq.2 . . . . 5  |-  F/_ x B
65nfcri 2330 . . . 4  |-  F/ x  z  e.  B
74, 6nfan 1576 . . 3  |-  F/ x
( z  =  A  /\  z  e.  B
)
87nfex 1648 . 2  |-  F/ x E. z ( z  =  A  /\  z  e.  B )
91, 8nfxfr 1485 1  |-  F/ x  A  e.  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   F/wnf 1471   E.wex 1503    e. wcel 2164   F/_wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  nfel1  2347  nfel2  2349  nfnel  2466  elabgf  2902  elrabf  2914  sbcel12g  3095  nfdisjv  4018  rabxfrd  4500  ffnfvf  5717  mptelixpg  6788  elabgft1  15270  elabgf2  15272  bj-rspgt  15278
  Copyright terms: Public domain W3C validator