ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldw Unicode version

Theorem nfraldw 2540
Description: Not-free for restricted universal quantification where  x and  y are distinct. See nfraldya 2543 for a version with  y and  A distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfraldw.1  |-  F/ y
ph
nfraldw.2  |-  ( ph  -> 
F/_ x A )
nfraldw.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfraldw  |-  ( ph  ->  F/ x A. y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfraldw
StepHypRef Expression
1 df-ral 2491 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2 nfraldw.1 . . 3  |-  F/ y
ph
3 nfcvd 2351 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfraldw.2 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeld 2366 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
6 nfraldw.3 . . . 4  |-  ( ph  ->  F/ x ps )
75, 6nfimd 1609 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  ->  ps ) )
82, 7nfald 1784 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  ->  ps ) )
91, 8nfxfrd 1499 1  |-  ( ph  ->  F/ x A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  nfralw  2545
  Copyright terms: Public domain W3C validator