| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfraldw | Unicode version | ||
| Description: Not-free for restricted
universal quantification where |
| Ref | Expression |
|---|---|
| nfraldw.1 |
|
| nfraldw.2 |
|
| nfraldw.3 |
|
| Ref | Expression |
|---|---|
| nfraldw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | nfraldw.1 |
. . 3
| |
| 3 | nfcvd 2349 |
. . . . 5
| |
| 4 | nfraldw.2 |
. . . . 5
| |
| 5 | 3, 4 | nfeld 2364 |
. . . 4
|
| 6 | nfraldw.3 |
. . . 4
| |
| 7 | 5, 6 | nfimd 1608 |
. . 3
|
| 8 | 2, 7 | nfald 1783 |
. 2
|
| 9 | 1, 8 | nfxfrd 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: nfralw 2543 |
| Copyright terms: Public domain | W3C validator |