Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfraldw | Unicode version |
Description: Not-free for restricted universal quantification where and are distinct. See nfraldya 2499 for a version with and distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfraldw.1 | |
nfraldw.2 | |
nfraldw.3 |
Ref | Expression |
---|---|
nfraldw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2447 | . 2 | |
2 | nfraldw.1 | . . 3 | |
3 | nfcvd 2307 | . . . . 5 | |
4 | nfraldw.2 | . . . . 5 | |
5 | 3, 4 | nfeld 2322 | . . . 4 |
6 | nfraldw.3 | . . . 4 | |
7 | 5, 6 | nfimd 1572 | . . 3 |
8 | 2, 7 | nfald 1747 | . 2 |
9 | 1, 8 | nfxfrd 1462 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1340 wnf 1447 wcel 2135 wnfc 2293 wral 2442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-4 1497 ax-17 1513 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 |
This theorem is referenced by: nfralw 2501 |
Copyright terms: Public domain | W3C validator |