Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfraldw | Unicode version |
Description: Not-free for restricted universal quantification where and are distinct. See nfraldya 2505 for a version with and distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfraldw.1 | |
nfraldw.2 | |
nfraldw.3 |
Ref | Expression |
---|---|
nfraldw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 | |
2 | nfraldw.1 | . . 3 | |
3 | nfcvd 2313 | . . . . 5 | |
4 | nfraldw.2 | . . . . 5 | |
5 | 3, 4 | nfeld 2328 | . . . 4 |
6 | nfraldw.3 | . . . 4 | |
7 | 5, 6 | nfimd 1578 | . . 3 |
8 | 2, 7 | nfald 1753 | . 2 |
9 | 1, 8 | nfxfrd 1468 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wnf 1453 wcel 2141 wnfc 2299 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: nfralw 2507 |
Copyright terms: Public domain | W3C validator |