ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldw Unicode version

Theorem nfraldw 2502
Description: Not-free for restricted universal quantification where  x and  y are distinct. See nfraldya 2505 for a version with  y and  A distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfraldw.1  |-  F/ y
ph
nfraldw.2  |-  ( ph  -> 
F/_ x A )
nfraldw.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfraldw  |-  ( ph  ->  F/ x A. y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfraldw
StepHypRef Expression
1 df-ral 2453 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2 nfraldw.1 . . 3  |-  F/ y
ph
3 nfcvd 2313 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfraldw.2 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeld 2328 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
6 nfraldw.3 . . . 4  |-  ( ph  ->  F/ x ps )
75, 6nfimd 1578 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  ->  ps ) )
82, 7nfald 1753 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  ->  ps ) )
91, 8nfxfrd 1468 1  |-  ( ph  ->  F/ x A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453    e. wcel 2141   F/_wnfc 2299   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453
This theorem is referenced by:  nfralw  2507
  Copyright terms: Public domain W3C validator