| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfraldya | Unicode version | ||
| Description: Not-free for restricted
universal quantification where |
| Ref | Expression |
|---|---|
| nfraldya.2 |
|
| nfraldya.3 |
|
| nfraldya.4 |
|
| Ref | Expression |
|---|---|
| nfraldya |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 |
. 2
| |
| 2 | sbim 1982 |
. . . . . 6
| |
| 3 | clelsb1 2312 |
. . . . . . 7
| |
| 4 | 3 | imbi1i 238 |
. . . . . 6
|
| 5 | 2, 4 | bitri 184 |
. . . . 5
|
| 6 | 5 | albii 1494 |
. . . 4
|
| 7 | nfv 1552 |
. . . . 5
| |
| 8 | 7 | sb8 1880 |
. . . 4
|
| 9 | df-ral 2491 |
. . . 4
| |
| 10 | 6, 8, 9 | 3bitr4i 212 |
. . 3
|
| 11 | nfv 1552 |
. . . 4
| |
| 12 | nfraldya.3 |
. . . 4
| |
| 13 | nfraldya.2 |
. . . . 5
| |
| 14 | nfraldya.4 |
. . . . 5
| |
| 15 | 13, 14 | nfsbd 2006 |
. . . 4
|
| 16 | 11, 12, 15 | nfraldxy 2541 |
. . 3
|
| 17 | 10, 16 | nfxfrd 1499 |
. 2
|
| 18 | 1, 17 | nfxfrd 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 |
| This theorem is referenced by: nfralya 2548 |
| Copyright terms: Public domain | W3C validator |