| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfraldya | Unicode version | ||
| Description: Not-free for restricted
universal quantification where |
| Ref | Expression |
|---|---|
| nfraldya.2 |
|
| nfraldya.3 |
|
| nfraldya.4 |
|
| Ref | Expression |
|---|---|
| nfraldya |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | sbim 1981 |
. . . . . 6
| |
| 3 | clelsb1 2310 |
. . . . . . 7
| |
| 4 | 3 | imbi1i 238 |
. . . . . 6
|
| 5 | 2, 4 | bitri 184 |
. . . . 5
|
| 6 | 5 | albii 1493 |
. . . 4
|
| 7 | nfv 1551 |
. . . . 5
| |
| 8 | 7 | sb8 1879 |
. . . 4
|
| 9 | df-ral 2489 |
. . . 4
| |
| 10 | 6, 8, 9 | 3bitr4i 212 |
. . 3
|
| 11 | nfv 1551 |
. . . 4
| |
| 12 | nfraldya.3 |
. . . 4
| |
| 13 | nfraldya.2 |
. . . . 5
| |
| 14 | nfraldya.4 |
. . . . 5
| |
| 15 | 13, 14 | nfsbd 2005 |
. . . 4
|
| 16 | 11, 12, 15 | nfraldxy 2539 |
. . 3
|
| 17 | 10, 16 | nfxfrd 1498 |
. 2
|
| 18 | 1, 17 | nfxfrd 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: nfralya 2546 |
| Copyright terms: Public domain | W3C validator |