ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldya Unicode version

Theorem nfraldya 2543
Description: Not-free for restricted universal quantification where  y and  A are distinct. See nfraldxy 2541 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfraldya.2  |-  F/ y
ph
nfraldya.3  |-  ( ph  -> 
F/_ x A )
nfraldya.4  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfraldya  |-  ( ph  ->  F/ x A. y  e.  A  ps )
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x)

Proof of Theorem nfraldya
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ral 2491 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2 sbim 1982 . . . . . 6  |-  ( [ z  /  y ] ( y  e.  A  ->  ps )  <->  ( [
z  /  y ] y  e.  A  ->  [ z  /  y ] ps ) )
3 clelsb1 2312 . . . . . . 7  |-  ( [ z  /  y ] y  e.  A  <->  z  e.  A )
43imbi1i 238 . . . . . 6  |-  ( ( [ z  /  y ] y  e.  A  ->  [ z  /  y ] ps )  <->  ( z  e.  A  ->  [ z  /  y ] ps ) )
52, 4bitri 184 . . . . 5  |-  ( [ z  /  y ] ( y  e.  A  ->  ps )  <->  ( z  e.  A  ->  [ z  /  y ] ps ) )
65albii 1494 . . . 4  |-  ( A. z [ z  /  y ] ( y  e.  A  ->  ps )  <->  A. z ( z  e.  A  ->  [ z  /  y ] ps ) )
7 nfv 1552 . . . . 5  |-  F/ z ( y  e.  A  ->  ps )
87sb8 1880 . . . 4  |-  ( A. y ( y  e.  A  ->  ps )  <->  A. z [ z  / 
y ] ( y  e.  A  ->  ps ) )
9 df-ral 2491 . . . 4  |-  ( A. z  e.  A  [
z  /  y ] ps  <->  A. z ( z  e.  A  ->  [ z  /  y ] ps ) )
106, 8, 93bitr4i 212 . . 3  |-  ( A. y ( y  e.  A  ->  ps )  <->  A. z  e.  A  [
z  /  y ] ps )
11 nfv 1552 . . . 4  |-  F/ z
ph
12 nfraldya.3 . . . 4  |-  ( ph  -> 
F/_ x A )
13 nfraldya.2 . . . . 5  |-  F/ y
ph
14 nfraldya.4 . . . . 5  |-  ( ph  ->  F/ x ps )
1513, 14nfsbd 2006 . . . 4  |-  ( ph  ->  F/ x [ z  /  y ] ps )
1611, 12, 15nfraldxy 2541 . . 3  |-  ( ph  ->  F/ x A. z  e.  A  [ z  /  y ] ps )
1710, 16nfxfrd 1499 . 2  |-  ( ph  ->  F/ x A. y
( y  e.  A  ->  ps ) )
181, 17nfxfrd 1499 1  |-  ( ph  ->  F/ x A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1484   [wsb 1786    e. wcel 2178   F/_wnfc 2337   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  nfralya  2548
  Copyright terms: Public domain W3C validator