ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldw GIF version

Theorem nfraldw 2498
Description: Not-free for restricted universal quantification where 𝑥 and 𝑦 are distinct. See nfraldya 2501 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfraldw.1 𝑦𝜑
nfraldw.2 (𝜑𝑥𝐴)
nfraldw.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfraldw (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfraldw
StepHypRef Expression
1 df-ral 2449 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
2 nfraldw.1 . . 3 𝑦𝜑
3 nfcvd 2309 . . . . 5 (𝜑𝑥𝑦)
4 nfraldw.2 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeld 2324 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
6 nfraldw.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
75, 6nfimd 1573 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
82, 7nfald 1748 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝜓))
91, 8nfxfrd 1463 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448  wcel 2136  wnfc 2295  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  nfralw  2503
  Copyright terms: Public domain W3C validator