| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfraldw | GIF version | ||
| Description: Not-free for restricted universal quantification where 𝑥 and 𝑦 are distinct. See nfraldya 2532 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by NM, 15-Feb-2013.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfraldw | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
| 2 | nfraldw.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvd 2340 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
| 4 | nfraldw.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeld 2355 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 6 | nfraldw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 7 | 5, 6 | nfimd 1599 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
| 8 | 2, 7 | nfald 1774 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
| 9 | 1, 8 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: nfralw 2534 |
| Copyright terms: Public domain | W3C validator |