Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfralw | Unicode version |
Description: Bound-variable hypothesis builder for restricted quantification. See nfralya 2505 for a version with and distinct instead of and . (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfralw.1 | |
nfralw.2 |
Ref | Expression |
---|---|
nfralw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1454 | . . 3 | |
2 | nfralw.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | nfralw.2 | . . . 4 | |
5 | 4 | a1i 9 | . . 3 |
6 | 1, 3, 5 | nfraldw 2497 | . 2 |
7 | 6 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1344 wnf 1448 wnfc 2294 wral 2443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 |
This theorem is referenced by: fprod2dlemstep 11559 fprodcom2fi 11563 nnwofdc 11967 |
Copyright terms: Public domain | W3C validator |