ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralw Unicode version

Theorem nfralw 2534
Description: Bound-variable hypothesis builder for restricted quantification. See nfralya 2537 for a version with  y and 
A distinct instead of  x and  y. (Contributed by NM, 1-Sep-1999.) (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfralw.1  |-  F/_ x A
nfralw.2  |-  F/ x ph
Assertion
Ref Expression
nfralw  |-  F/ x A. y  e.  A  ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfralw
StepHypRef Expression
1 nftru 1480 . . 3  |-  F/ y T.
2 nfralw.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralw.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfraldw 2529 . 2  |-  ( T. 
->  F/ x A. y  e.  A  ph )
76mptru 1373 1  |-  F/ x A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   F/wnf 1474   F/_wnfc 2326   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  rspc2vd  3153  opabfi  6999  fprod2dlemstep  11787  fprodcom2fi  11791  nnwofdc  12205
  Copyright terms: Public domain W3C validator