| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfreuw | Unicode version | ||
| Description: Not-free for restricted
uniqueness. This is a version where |
| Ref | Expression |
|---|---|
| nfreuw.1 |
|
| nfreuw.2 |
|
| Ref | Expression |
|---|---|
| nfreuw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1512 |
. . 3
| |
| 2 | nfreuw.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | nfreuw.2 |
. . . 4
| |
| 5 | 4 | a1i 9 |
. . 3
|
| 6 | 1, 3, 5 | nfreudxy 2705 |
. 2
|
| 7 | 6 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-cleq 2222 df-clel 2225 df-nfc 2361 df-reu 2515 |
| This theorem is referenced by: sbcreug 3109 reuccatpfxs1 11274 |
| Copyright terms: Public domain | W3C validator |