| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfreuw | Unicode version | ||
| Description: Not-free for restricted
uniqueness. This is a version where |
| Ref | Expression |
|---|---|
| nfreuw.1 |
|
| nfreuw.2 |
|
| Ref | Expression |
|---|---|
| nfreuw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1490 |
. . 3
| |
| 2 | nfreuw.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | nfreuw.2 |
. . . 4
| |
| 5 | 4 | a1i 9 |
. . 3
|
| 6 | 1, 3, 5 | nfreudxy 2682 |
. 2
|
| 7 | 6 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-cleq 2200 df-clel 2203 df-nfc 2339 df-reu 2493 |
| This theorem is referenced by: sbcreug 3086 reuccatpfxs1 11238 |
| Copyright terms: Public domain | W3C validator |