ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuccatpfxs1 Unicode version

Theorem reuccatpfxs1 11274
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
Hypothesis
Ref Expression
reuccatpfxs1.1  |-  F/_ v X
Assertion
Ref Expression
reuccatpfxs1  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) ) )  ->  ( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! x  e.  X  W  =  ( x prefix  ( `  W ) ) ) )
Distinct variable groups:    v, V, x   
v, W, x    x, X
Allowed substitution hint:    X( v)

Proof of Theorem reuccatpfxs1
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2290 . . . 4  |-  ( x  =  y  ->  (
x  e. Word  V  <->  y  e. Word  V ) )
2 fveqeq2 5635 . . . 4  |-  ( x  =  y  ->  (
( `  x )  =  ( ( `  W
)  +  1 )  <-> 
( `  y )  =  ( ( `  W
)  +  1 ) ) )
31, 2anbi12d 473 . . 3  |-  ( x  =  y  ->  (
( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) )  <->  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) ) )
43cbvralvw 2769 . 2  |-  ( A. x  e.  X  (
x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) )  <->  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )
5 reuccatpfxs1.1 . . . . 5  |-  F/_ v X
65nfel2 2385 . . . 4  |-  F/ v ( W ++  <" u "> )  e.  X
75nfel2 2385 . . . 4  |-  F/ v ( W ++  <" x "> )  e.  X
8 s1eq 11147 . . . . . 6  |-  ( v  =  x  ->  <" v ">  =  <" x "> )
98oveq2d 6016 . . . . 5  |-  ( v  =  x  ->  ( W ++  <" v "> )  =  ( W ++  <" x "> ) )
109eleq1d 2298 . . . 4  |-  ( v  =  x  ->  (
( W ++  <" v "> )  e.  X  <->  ( W ++  <" x "> )  e.  X
) )
11 s1eq 11147 . . . . . 6  |-  ( x  =  u  ->  <" x ">  =  <" u "> )
1211oveq2d 6016 . . . . 5  |-  ( x  =  u  ->  ( W ++  <" x "> )  =  ( W ++  <" u "> ) )
1312eleq1d 2298 . . . 4  |-  ( x  =  u  ->  (
( W ++  <" x "> )  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
146, 7, 10, 13reu8nf 3110 . . 3  |-  ( E! v  e.  V  ( W ++  <" v "> )  e.  X  <->  E. v  e.  V  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )
15 nfv 1574 . . . . 5  |-  F/ v  W  e. Word  V
16 nfv 1574 . . . . . 6  |-  F/ v ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) )
175, 16nfralw 2567 . . . . 5  |-  F/ v A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) )
1815, 17nfan 1611 . . . 4  |-  F/ v ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )
19 nfv 1574 . . . . 5  |-  F/ v  W  =  ( x prefix 
( `  W ) )
205, 19nfreuw 2706 . . . 4  |-  F/ v E! x  e.  X  W  =  ( x prefix  ( `  W ) )
21 simprl 529 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  ( W ++  <" v "> )  e.  X
)
22 simpl 109 . . . . . . . . . . 11  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  ->  W  e. Word  V )
2322ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  W  e. Word  V )
2423anim1i 340 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  ( W  e. Word  V  /\  x  e.  X ) )
25 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )
26 simp-4r 542 . . . . . . . . 9  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  A. y  e.  X  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) )
27 reuccatpfxs1lem 11273 . . . . . . . . 9  |-  ( ( ( W  e. Word  V  /\  x  e.  X
)  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u )  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) )  -> 
( W  =  ( x prefix  ( `  W )
)  ->  x  =  ( W ++  <" v "> ) ) )
2824, 25, 26, 27syl3anc 1271 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  ( W  =  ( x prefix  ( `  W ) )  ->  x  =  ( W ++  <" v "> ) ) )
29 oveq1 6007 . . . . . . . . . . 11  |-  ( x  =  ( W ++  <" v "> )  ->  ( x prefix  ( `  W
) )  =  ( ( W ++  <" v "> ) prefix  ( `  W
) ) )
30 s1cl 11149 . . . . . . . . . . . . . 14  |-  ( v  e.  V  ->  <" v ">  e. Word  V )
3122, 30anim12i 338 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  ->  ( W  e. Word  V  /\  <" v ">  e. Word  V ) )
3231ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  ( W  e. Word  V  /\  <" v ">  e. Word  V )
)
33 pfxccat1 11229 . . . . . . . . . . . 12  |-  ( ( W  e. Word  V  /\  <" v ">  e. Word  V )  ->  (
( W ++  <" v "> ) prefix  ( `  W
) )  =  W )
3432, 33syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  ( ( W ++  <" v "> ) prefix  ( `  W
) )  =  W )
3529, 34sylan9eqr 2284 . . . . . . . . . 10  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  /\  x  =  ( W ++  <" v "> ) )  -> 
( x prefix  ( `  W
) )  =  W )
3635eqcomd 2235 . . . . . . . . 9  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  /\  x  =  ( W ++  <" v "> ) )  ->  W  =  ( x prefix  ( `  W ) ) )
3736ex 115 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  ( x  =  ( W ++  <" v "> )  ->  W  =  ( x prefix 
( `  W ) ) ) )
3828, 37impbid 129 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  A. y  e.  X  (
y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  x  e.  X
)  ->  ( W  =  ( x prefix  ( `  W ) )  <->  x  =  ( W ++  <" v "> ) ) )
3938ralrimiva 2603 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  A. x  e.  X  ( W  =  ( x prefix  ( `  W ) )  <->  x  =  ( W ++  <" v "> ) ) )
40 reu6i 2994 . . . . . 6  |-  ( ( ( W ++  <" v "> )  e.  X  /\  A. x  e.  X  ( W  =  (
x prefix  ( `  W )
)  <->  x  =  ( W ++  <" v "> ) ) )  ->  E! x  e.  X  W  =  ( x prefix  ( `  W )
) )
4121, 39, 40syl2anc 411 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y
)  =  ( ( `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  E! x  e.  X  W  =  ( x prefix  ( `  W ) ) )
4241exp31 364 . . . 4  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  ->  (
v  e.  V  -> 
( ( ( W ++ 
<" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )  ->  E! x  e.  X  W  =  ( x prefix  ( `  W
) ) ) ) )
4318, 20, 42rexlimd 2645 . . 3  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  ->  ( E. v  e.  V  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )  ->  E! x  e.  X  W  =  ( x prefix  ( `  W
) ) ) )
4414, 43biimtrid 152 . 2  |-  ( ( W  e. Word  V  /\  A. y  e.  X  ( y  e. Word  V  /\  ( `  y )  =  ( ( `  W
)  +  1 ) ) )  ->  ( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! x  e.  X  W  =  ( x prefix  ( `  W ) ) ) )
454, 44sylan2b 287 1  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( `  x )  =  ( ( `  W
)  +  1 ) ) )  ->  ( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! x  e.  X  W  =  ( x prefix  ( `  W ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   F/_wnfc 2359   A.wral 2508   E.wrex 2509   E!wreu 2510   ` cfv 5317  (class class class)co 6000   1c1 7996    + caddc 7998  ♯chash 10992  Word cword 11066   ++ cconcat 11120   <"cs1 11143   prefix cpfx 11199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-lsw 11112  df-concat 11121  df-s1 11144  df-substr 11173  df-pfx 11200
This theorem is referenced by:  reuccatpfxs1v  11275
  Copyright terms: Public domain W3C validator