ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcreug Unicode version

Theorem sbcreug 3017
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
sbcreug  |-  ( A  e.  V  ->  ( [. A  /  x ]. E! y  e.  B  ph  <->  E! y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem sbcreug
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2940 . 2  |-  ( z  =  A  ->  ( [ z  /  x ] E! y  e.  B  ph  <->  [. A  /  x ]. E! y  e.  B  ph ) )
2 dfsbcq2 2940 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32reubidv 2640 . 2  |-  ( z  =  A  ->  ( E! y  e.  B  [ z  /  x ] ph  <->  E! y  e.  B  [. A  /  x ]. ph ) )
4 nfcv 2299 . . . 4  |-  F/_ x B
5 nfs1v 1919 . . . 4  |-  F/ x [ z  /  x ] ph
64, 5nfreuxy 2631 . . 3  |-  F/ x E! y  e.  B  [ z  /  x ] ph
7 sbequ12 1751 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87reubidv 2640 . . 3  |-  ( x  =  z  ->  ( E! y  e.  B  ph  <->  E! y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 1771 . 2  |-  ( [ z  /  x ] E! y  e.  B  ph  <->  E! y  e.  B  [
z  /  x ] ph )
101, 3, 9vtoclbg 2773 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. E! y  e.  B  ph  <->  E! y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335   [wsb 1742    e. wcel 2128   E!wreu 2437   [.wsbc 2937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-reu 2442  df-v 2714  df-sbc 2938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator