| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbcreug | Unicode version | ||
| Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) | 
| Ref | Expression | 
|---|---|
| sbcreug | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsbcq2 2992 | 
. 2
 | |
| 2 | dfsbcq2 2992 | 
. . 3
 | |
| 3 | 2 | reubidv 2681 | 
. 2
 | 
| 4 | nfcv 2339 | 
. . . 4
 | |
| 5 | nfs1v 1958 | 
. . . 4
 | |
| 6 | 4, 5 | nfreuxy 2672 | 
. . 3
 | 
| 7 | sbequ12 1785 | 
. . . 4
 | |
| 8 | 7 | reubidv 2681 | 
. . 3
 | 
| 9 | 6, 8 | sbie 1805 | 
. 2
 | 
| 10 | 1, 3, 9 | vtoclbg 2825 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-reu 2482 df-v 2765 df-sbc 2990 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |