ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreuxy Unicode version

Theorem nfreuxy 2644
Description: Not-free for restricted uniqueness. This is a version where 
x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreuxy.1  |-  F/_ x A
nfreuxy.2  |-  F/ x ph
Assertion
Ref Expression
nfreuxy  |-  F/ x E! y  e.  A  ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfreuxy
StepHypRef Expression
1 nftru 1459 . . 3  |-  F/ y T.
2 nfreuxy.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfreuxy.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfreudxy 2643 . 2  |-  ( T. 
->  F/ x E! y  e.  A  ph )
76mptru 1357 1  |-  F/ x E! y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1349   F/wnf 1453   F/_wnfc 2299   E!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-cleq 2163  df-clel 2166  df-nfc 2301  df-reu 2455
This theorem is referenced by:  sbcreug  3035
  Copyright terms: Public domain W3C validator