ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreuxy Unicode version

Theorem nfreuxy 2541
Description: Not-free for restricted uniqueness. This is a version where 
x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreuxy.1  |-  F/_ x A
nfreuxy.2  |-  F/ x ph
Assertion
Ref Expression
nfreuxy  |-  F/ x E! y  e.  A  ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfreuxy
StepHypRef Expression
1 nftru 1400 . . 3  |-  F/ y T.
2 nfreuxy.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfreuxy.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfreudxy 2540 . 2  |-  ( T. 
->  F/ x E! y  e.  A  ph )
76mptru 1298 1  |-  F/ x E! y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1290   F/wnf 1394   F/_wnfc 2215   E!wreu 2361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-cleq 2081  df-clel 2084  df-nfc 2217  df-reu 2366
This theorem is referenced by:  sbcreug  2919
  Copyright terms: Public domain W3C validator