Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfreuxy | Unicode version |
Description: Not-free for restricted uniqueness. This is a version where and are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.) |
Ref | Expression |
---|---|
nfreuxy.1 | |
nfreuxy.2 |
Ref | Expression |
---|---|
nfreuxy |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1459 | . . 3 | |
2 | nfreuxy.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | nfreuxy.2 | . . . 4 | |
5 | 4 | a1i 9 | . . 3 |
6 | 1, 3, 5 | nfreudxy 2643 | . 2 |
7 | 6 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1349 wnf 1453 wnfc 2299 wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-cleq 2163 df-clel 2166 df-nfc 2301 df-reu 2455 |
This theorem is referenced by: sbcreug 3035 |
Copyright terms: Public domain | W3C validator |