ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreuxy GIF version

Theorem nfreuxy 2645
Description: Not-free for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreuxy.1 𝑥𝐴
nfreuxy.2 𝑥𝜑
Assertion
Ref Expression
nfreuxy 𝑥∃!𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfreuxy
StepHypRef Expression
1 nftru 1460 . . 3 𝑦
2 nfreuxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfreuxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfreudxy 2644 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝐴 𝜑)
76mptru 1358 1 𝑥∃!𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1350  wnf 1454  wnfc 2300  ∃!wreu 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-cleq 2164  df-clel 2167  df-nfc 2302  df-reu 2456
This theorem is referenced by:  sbcreug  3036
  Copyright terms: Public domain W3C validator