Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfreuxy | GIF version |
Description: Not-free for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.) |
Ref | Expression |
---|---|
nfreuxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfreuxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfreuxy | ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1460 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfreuxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfreuxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfreudxy 2644 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1358 | 1 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1350 Ⅎwnf 1454 Ⅎwnfc 2300 ∃!wreu 2451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-cleq 2164 df-clel 2167 df-nfc 2302 df-reu 2456 |
This theorem is referenced by: sbcreug 3036 |
Copyright terms: Public domain | W3C validator |