ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreuxy GIF version

Theorem nfreuxy 2639
Description: Not-free for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreuxy.1 𝑥𝐴
nfreuxy.2 𝑥𝜑
Assertion
Ref Expression
nfreuxy 𝑥∃!𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfreuxy
StepHypRef Expression
1 nftru 1454 . . 3 𝑦
2 nfreuxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfreuxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfreudxy 2638 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝐴 𝜑)
76mptru 1352 1 𝑥∃!𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1344  wnf 1448  wnfc 2294  ∃!wreu 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-cleq 2158  df-clel 2161  df-nfc 2296  df-reu 2450
This theorem is referenced by:  sbcreug  3030
  Copyright terms: Public domain W3C validator