ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy Unicode version

Theorem nfriotadxy 5690
Description: Deduction version of nfriota 5691. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1  |-  F/ y
ph
nfriotadxy.2  |-  ( ph  ->  F/ x ps )
nfriotadxy.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfriotadxy  |-  ( ph  -> 
F/_ x ( iota_ y  e.  A  ps )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5682 . 2  |-  ( iota_ y  e.  A  ps )  =  ( iota y
( y  e.  A  /\  ps ) )
2 nfriotadxy.1 . . 3  |-  F/ y
ph
3 nfcv 2253 . . . . . 6  |-  F/_ x
y
43a1i 9 . . . . 5  |-  ( ph  -> 
F/_ x y )
5 nfriotadxy.3 . . . . 5  |-  ( ph  -> 
F/_ x A )
64, 5nfeld 2269 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
7 nfriotadxy.2 . . . 4  |-  ( ph  ->  F/ x ps )
86, 7nfand 1528 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
92, 8nfiotadxy 5047 . 2  |-  ( ph  -> 
F/_ x ( iota y ( y  e.  A  /\  ps )
) )
101, 9nfcxfrd 2251 1  |-  ( ph  -> 
F/_ x ( iota_ y  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   F/wnf 1417    e. wcel 1461   F/_wnfc 2240   iotacio 5042   iota_crio 5681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-sn 3497  df-uni 3701  df-iota 5044  df-riota 5682
This theorem is referenced by:  nfriota  5691
  Copyright terms: Public domain W3C validator