ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy Unicode version

Theorem nfriotadxy 5931
Description: Deduction version of nfriota 5932. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1  |-  F/ y
ph
nfriotadxy.2  |-  ( ph  ->  F/ x ps )
nfriotadxy.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfriotadxy  |-  ( ph  -> 
F/_ x ( iota_ y  e.  A  ps )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5922 . 2  |-  ( iota_ y  e.  A  ps )  =  ( iota y
( y  e.  A  /\  ps ) )
2 nfriotadxy.1 . . 3  |-  F/ y
ph
3 nfcv 2350 . . . . . 6  |-  F/_ x
y
43a1i 9 . . . . 5  |-  ( ph  -> 
F/_ x y )
5 nfriotadxy.3 . . . . 5  |-  ( ph  -> 
F/_ x A )
64, 5nfeld 2366 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
7 nfriotadxy.2 . . . 4  |-  ( ph  ->  F/ x ps )
86, 7nfand 1592 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
92, 8nfiotadw 5254 . 2  |-  ( ph  -> 
F/_ x ( iota y ( y  e.  A  /\  ps )
) )
101, 9nfcxfrd 2348 1  |-  ( ph  -> 
F/_ x ( iota_ y  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   iotacio 5249   iota_crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-sn 3649  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by:  nfriota  5932
  Copyright terms: Public domain W3C validator