| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfriotadxy | GIF version | ||
| Description: Deduction version of nfriota 5964. (Contributed by Jim Kingdon, 12-Jan-2019.) |
| Ref | Expression |
|---|---|
| nfriotadxy.1 | ⊢ Ⅎ𝑦𝜑 |
| nfriotadxy.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfriotadxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfriotadxy | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5954 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | nfriotadxy.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcv 2372 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
| 5 | nfriotadxy.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | 4, 5 | nfeld 2388 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfriotadxy.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfand 1614 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 9 | 2, 8 | nfiotadw 5281 | . 2 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 10 | 1, 9 | nfcxfrd 2370 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 ℩cio 5276 ℩crio 5953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-sn 3672 df-uni 3889 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: nfriota 5964 |
| Copyright terms: Public domain | W3C validator |