ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy GIF version

Theorem nfriotadxy 5908
Description: Deduction version of nfriota 5909. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1 𝑦𝜑
nfriotadxy.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotadxy.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotadxy (𝜑𝑥(𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5899 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadxy.1 . . 3 𝑦𝜑
3 nfcv 2348 . . . . . 6 𝑥𝑦
43a1i 9 . . . . 5 (𝜑𝑥𝑦)
5 nfriotadxy.3 . . . . 5 (𝜑𝑥𝐴)
64, 5nfeld 2364 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfriotadxy.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfand 1591 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
92, 8nfiotadw 5235 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
101, 9nfcxfrd 2346 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wnf 1483  wcel 2176  wnfc 2335  cio 5230  crio 5898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-sn 3639  df-uni 3851  df-iota 5232  df-riota 5899
This theorem is referenced by:  nfriota  5909
  Copyright terms: Public domain W3C validator