ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy GIF version

Theorem nfriotadxy 5654
Description: Deduction version of nfriota 5655. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1 𝑦𝜑
nfriotadxy.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotadxy.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotadxy (𝜑𝑥(𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5646 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadxy.1 . . 3 𝑦𝜑
3 nfcv 2235 . . . . . 6 𝑥𝑦
43a1i 9 . . . . 5 (𝜑𝑥𝑦)
5 nfriotadxy.3 . . . . 5 (𝜑𝑥𝐴)
64, 5nfeld 2251 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfriotadxy.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfand 1512 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
92, 8nfiotadxy 5017 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
101, 9nfcxfrd 2233 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1401  wcel 1445  wnfc 2222  cio 5012  crio 5645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-sn 3472  df-uni 3676  df-iota 5014  df-riota 5646
This theorem is referenced by:  nfriota  5655
  Copyright terms: Public domain W3C validator