ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriotadxy GIF version

Theorem nfriotadxy 5806
Description: Deduction version of nfriota 5807. (Contributed by Jim Kingdon, 12-Jan-2019.)
Hypotheses
Ref Expression
nfriotadxy.1 𝑦𝜑
nfriotadxy.2 (𝜑 → Ⅎ𝑥𝜓)
nfriotadxy.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfriotadxy (𝜑𝑥(𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriotadxy
StepHypRef Expression
1 df-riota 5798 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
2 nfriotadxy.1 . . 3 𝑦𝜑
3 nfcv 2308 . . . . . 6 𝑥𝑦
43a1i 9 . . . . 5 (𝜑𝑥𝑦)
5 nfriotadxy.3 . . . . 5 (𝜑𝑥𝐴)
64, 5nfeld 2324 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfriotadxy.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfand 1556 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
92, 8nfiotadw 5156 . 2 (𝜑𝑥(℩𝑦(𝑦𝐴𝜓)))
101, 9nfcxfrd 2306 1 (𝜑𝑥(𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1448  wcel 2136  wnfc 2295  cio 5151  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-sn 3582  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  nfriota  5807
  Copyright terms: Public domain W3C validator