| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfriotadxy | GIF version | ||
| Description: Deduction version of nfriota 5890. (Contributed by Jim Kingdon, 12-Jan-2019.) |
| Ref | Expression |
|---|---|
| nfriotadxy.1 | ⊢ Ⅎ𝑦𝜑 |
| nfriotadxy.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfriotadxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfriotadxy | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5880 | . 2 ⊢ (℩𝑦 ∈ 𝐴 𝜓) = (℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | nfriotadxy.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
| 5 | nfriotadxy.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | 4, 5 | nfeld 2355 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfriotadxy.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfand 1582 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 9 | 2, 8 | nfiotadw 5223 | . 2 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦(𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 10 | 1, 9 | nfcxfrd 2337 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ℩cio 5218 ℩crio 5879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-sn 3629 df-uni 3841 df-iota 5220 df-riota 5880 |
| This theorem is referenced by: nfriota 5890 |
| Copyright terms: Public domain | W3C validator |