ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcw Unicode version

Theorem nfsbcw 3115
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3006 with a disjoint variable condition, which in the future may make it possible to reduce axiom usage. (Contributed by NM, 7-Sep-2014.) (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfsbcw.1  |-  F/_ x A
nfsbcw.2  |-  F/ x ph
Assertion
Ref Expression
nfsbcw  |-  F/ x [. A  /  y ]. ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfsbcw
StepHypRef Expression
1 nftru 1477 . . 3  |-  F/ y T.
2 nfsbcw.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfsbcw.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfsbcdw 3114 . 2  |-  ( T. 
->  F/ x [. A  /  y ]. ph )
76mptru 1373 1  |-  F/ x [. A  /  y ]. ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   F/wnf 1471   F/_wnfc 2323   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-sbc 2986
This theorem is referenced by:  elovmporab  6110  elovmporab1w  6111
  Copyright terms: Public domain W3C validator