ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabgf Unicode version

Theorem opelopabgf 4300
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4298 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Hypotheses
Ref Expression
opelopabgf.x  |-  F/ x ps
opelopabgf.y  |-  F/ y ch
opelopabgf.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabgf.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
opelopabgf  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)    V( x, y)    W( x, y)

Proof of Theorem opelopabgf
StepHypRef Expression
1 opelopabsb 4290 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 nfcv 2336 . . . . 5  |-  F/_ x B
3 opelopabgf.x . . . . 5  |-  F/ x ps
42, 3nfsbcw 3115 . . . 4  |-  F/ x [. B  /  y ]. ps
5 opelopabgf.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65sbcbidv 3044 . . . 4  |-  ( x  =  A  ->  ( [. B  /  y ]. ph  <->  [. B  /  y ]. ps ) )
74, 6sbciegf 3017 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  /  y ]. ps ) )
8 opelopabgf.y . . . 4  |-  F/ y ch
9 opelopabgf.2 . . . 4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
108, 9sbciegf 3017 . . 3  |-  ( B  e.  W  ->  ( [. B  /  y ]. ps  <->  ch ) )
117, 10sylan9bb 462 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ch )
)
121, 11bitrid 192 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1471    e. wcel 2164   [.wsbc 2985   <.cop 3621   {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091
This theorem is referenced by:  opabfi  6992
  Copyright terms: Public domain W3C validator