| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabgf | Unicode version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4318 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
| Ref | Expression |
|---|---|
| opelopabgf.x |
|
| opelopabgf.y |
|
| opelopabgf.1 |
|
| opelopabgf.2 |
|
| Ref | Expression |
|---|---|
| opelopabgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4310 |
. 2
| |
| 2 | nfcv 2349 |
. . . . 5
| |
| 3 | opelopabgf.x |
. . . . 5
| |
| 4 | 2, 3 | nfsbcw 3129 |
. . . 4
|
| 5 | opelopabgf.1 |
. . . . 5
| |
| 6 | 5 | sbcbidv 3058 |
. . . 4
|
| 7 | 4, 6 | sbciegf 3031 |
. . 3
|
| 8 | opelopabgf.y |
. . . 4
| |
| 9 | opelopabgf.2 |
. . . 4
| |
| 10 | 8, 9 | sbciegf 3031 |
. . 3
|
| 11 | 7, 10 | sylan9bb 462 |
. 2
|
| 12 | 1, 11 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 |
| This theorem is referenced by: opabfi 7042 |
| Copyright terms: Public domain | W3C validator |