| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabgf | Unicode version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 4355 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
| Ref | Expression |
|---|---|
| opelopabgf.x |
|
| opelopabgf.y |
|
| opelopabgf.1 |
|
| opelopabgf.2 |
|
| Ref | Expression |
|---|---|
| opelopabgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4347 |
. 2
| |
| 2 | nfcv 2372 |
. . . . 5
| |
| 3 | opelopabgf.x |
. . . . 5
| |
| 4 | 2, 3 | nfsbcw 3159 |
. . . 4
|
| 5 | opelopabgf.1 |
. . . . 5
| |
| 6 | 5 | sbcbidv 3087 |
. . . 4
|
| 7 | 4, 6 | sbciegf 3060 |
. . 3
|
| 8 | opelopabgf.y |
. . . 4
| |
| 9 | opelopabgf.2 |
. . . 4
| |
| 10 | 8, 9 | sbciegf 3060 |
. . 3
|
| 11 | 7, 10 | sylan9bb 462 |
. 2
|
| 12 | 1, 11 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 |
| This theorem is referenced by: opabfi 7088 |
| Copyright terms: Public domain | W3C validator |