| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elovmporab1w | Unicode version | ||
| Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| elovmporab1w.o |
|
| elovmporab1w.v |
|
| Ref | Expression |
|---|---|
| elovmporab1w |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmporab1w.o |
. . 3
| |
| 2 | 1 | elmpocl 6199 |
. 2
|
| 3 | 1 | a1i 9 |
. . . . 5
|
| 4 | csbeq1 3127 |
. . . . . . 7
| |
| 5 | 4 | ad2antrl 490 |
. . . . . 6
|
| 6 | sbceq1a 3038 |
. . . . . . . 8
| |
| 7 | sbceq1a 3038 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylan9bbr 463 |
. . . . . . 7
|
| 9 | 8 | adantl 277 |
. . . . . 6
|
| 10 | 5, 9 | rabeqbidv 2794 |
. . . . 5
|
| 11 | eqidd 2230 |
. . . . 5
| |
| 12 | simpl 109 |
. . . . 5
| |
| 13 | simpr 110 |
. . . . 5
| |
| 14 | elovmporab1w.v |
. . . . . 6
| |
| 15 | rabexg 4226 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | nfcv 2372 |
. . . . . . 7
| |
| 18 | 17 | nfel1 2383 |
. . . . . 6
|
| 19 | nfcv 2372 |
. . . . . . 7
| |
| 20 | 19 | nfel1 2383 |
. . . . . 6
|
| 21 | 18, 20 | nfan 1611 |
. . . . 5
|
| 22 | nfcv 2372 |
. . . . . . 7
| |
| 23 | 22 | nfel1 2383 |
. . . . . 6
|
| 24 | nfcv 2372 |
. . . . . . 7
| |
| 25 | 24 | nfel1 2383 |
. . . . . 6
|
| 26 | 23, 25 | nfan 1611 |
. . . . 5
|
| 27 | nfsbc1v 3047 |
. . . . . 6
| |
| 28 | nfcv 2372 |
. . . . . . 7
| |
| 29 | 17, 28 | nfcsbw 3161 |
. . . . . 6
|
| 30 | 27, 29 | nfrabw 2712 |
. . . . 5
|
| 31 | nfsbc1v 3047 |
. . . . . . 7
| |
| 32 | 22, 31 | nfsbcw 3159 |
. . . . . 6
|
| 33 | nfcv 2372 |
. . . . . . 7
| |
| 34 | 22, 33 | nfcsbw 3161 |
. . . . . 6
|
| 35 | 32, 34 | nfrabw 2712 |
. . . . 5
|
| 36 | 3, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35 | ovmpodxf 6129 |
. . . 4
|
| 37 | 36 | eleq2d 2299 |
. . 3
|
| 38 | df-3an 1004 |
. . . . 5
| |
| 39 | 38 | simplbi2com 1487 |
. . . 4
|
| 40 | elrabi 2956 |
. . . 4
| |
| 41 | 39, 40 | syl11 31 |
. . 3
|
| 42 | 37, 41 | sylbid 150 |
. 2
|
| 43 | 2, 42 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 |
| This theorem is referenced by: elovmpowrd 11108 |
| Copyright terms: Public domain | W3C validator |