Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbcdw | Unicode version |
Description: Version of nfsbcd 2970 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcdw.1 | |
nfsbcdw.2 | |
nfsbcdw.3 |
Ref | Expression |
---|---|
nfsbcdw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 2952 | . 2 | |
2 | nfsbcdw.2 | . . 3 | |
3 | nfsbcdw.1 | . . . 4 | |
4 | nfsbcdw.3 | . . . 4 | |
5 | 3, 4 | nfabdw 2327 | . . 3 |
6 | 2, 5 | nfeld 2324 | . 2 |
7 | 1, 6 | nfxfrd 1463 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wnf 1448 wcel 2136 cab 2151 wnfc 2295 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-sbc 2952 |
This theorem is referenced by: nfcsbw 3081 |
Copyright terms: Public domain | W3C validator |