ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcdw Unicode version

Theorem nfsbcdw 3092
Description: Version of nfsbcd 2983 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfsbcdw.1  |-  F/ y
ph
nfsbcdw.2  |-  ( ph  -> 
F/_ x A )
nfsbcdw.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfsbcdw  |-  ( ph  ->  F/ x [. A  /  y ]. ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfsbcdw
StepHypRef Expression
1 df-sbc 2964 . 2  |-  ( [. A  /  y ]. ps  <->  A  e.  { y  |  ps } )
2 nfsbcdw.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfsbcdw.1 . . . 4  |-  F/ y
ph
4 nfsbcdw.3 . . . 4  |-  ( ph  ->  F/ x ps )
53, 4nfabdw 2338 . . 3  |-  ( ph  -> 
F/_ x { y  |  ps } )
62, 5nfeld 2335 . 2  |-  ( ph  ->  F/ x  A  e. 
{ y  |  ps } )
71, 6nfxfrd 1475 1  |-  ( ph  ->  F/ x [. A  /  y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1460    e. wcel 2148   {cab 2163   F/_wnfc 2306   [.wsbc 2963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-sbc 2964
This theorem is referenced by:  nfcsbw  3094
  Copyright terms: Public domain W3C validator