ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcdw Unicode version

Theorem nfsbcdw 3079
Description: Version of nfsbcd 2970 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfsbcdw.1  |-  F/ y
ph
nfsbcdw.2  |-  ( ph  -> 
F/_ x A )
nfsbcdw.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfsbcdw  |-  ( ph  ->  F/ x [. A  /  y ]. ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfsbcdw
StepHypRef Expression
1 df-sbc 2952 . 2  |-  ( [. A  /  y ]. ps  <->  A  e.  { y  |  ps } )
2 nfsbcdw.2 . . 3  |-  ( ph  -> 
F/_ x A )
3 nfsbcdw.1 . . . 4  |-  F/ y
ph
4 nfsbcdw.3 . . . 4  |-  ( ph  ->  F/ x ps )
53, 4nfabdw 2327 . . 3  |-  ( ph  -> 
F/_ x { y  |  ps } )
62, 5nfeld 2324 . 2  |-  ( ph  ->  F/ x  A  e. 
{ y  |  ps } )
71, 6nfxfrd 1463 1  |-  ( ph  ->  F/ x [. A  /  y ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1448    e. wcel 2136   {cab 2151   F/_wnfc 2295   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-sbc 2952
This theorem is referenced by:  nfcsbw  3081
  Copyright terms: Public domain W3C validator