| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbcdw | Unicode version | ||
| Description: Version of nfsbcd 3025 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcdw.1 |
|
| nfsbcdw.2 |
|
| nfsbcdw.3 |
|
| Ref | Expression |
|---|---|
| nfsbcdw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3006 |
. 2
| |
| 2 | nfsbcdw.2 |
. . 3
| |
| 3 | nfsbcdw.1 |
. . . 4
| |
| 4 | nfsbcdw.3 |
. . . 4
| |
| 5 | 3, 4 | nfabdw 2369 |
. . 3
|
| 6 | 2, 5 | nfeld 2366 |
. 2
|
| 7 | 1, 6 | nfxfrd 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-sbc 3006 |
| This theorem is referenced by: nfsbcw 3136 nfcsbw 3138 |
| Copyright terms: Public domain | W3C validator |