| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elovmporab | Unicode version | ||
| Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| elovmporab.o |
|
| elovmporab.v |
|
| Ref | Expression |
|---|---|
| elovmporab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmporab.o |
. . 3
| |
| 2 | 1 | elmpocl 6153 |
. 2
|
| 3 | 1 | a1i 9 |
. . . . 5
|
| 4 | sbceq1a 3012 |
. . . . . . . 8
| |
| 5 | sbceq1a 3012 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylan9bbr 463 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | 7 | rabbidv 2762 |
. . . . 5
|
| 9 | eqidd 2207 |
. . . . 5
| |
| 10 | simpl 109 |
. . . . 5
| |
| 11 | simpr 110 |
. . . . 5
| |
| 12 | elovmporab.v |
. . . . . 6
| |
| 13 | rabexg 4194 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | nfcv 2349 |
. . . . . . 7
| |
| 16 | 15 | nfel1 2360 |
. . . . . 6
|
| 17 | nfcv 2349 |
. . . . . . 7
| |
| 18 | 17 | nfel1 2360 |
. . . . . 6
|
| 19 | 16, 18 | nfan 1589 |
. . . . 5
|
| 20 | nfcv 2349 |
. . . . . . 7
| |
| 21 | 20 | nfel1 2360 |
. . . . . 6
|
| 22 | nfcv 2349 |
. . . . . . 7
| |
| 23 | 22 | nfel1 2360 |
. . . . . 6
|
| 24 | 21, 23 | nfan 1589 |
. . . . 5
|
| 25 | nfsbc1v 3021 |
. . . . . 6
| |
| 26 | nfcv 2349 |
. . . . . 6
| |
| 27 | 25, 26 | nfrabw 2688 |
. . . . 5
|
| 28 | nfsbc1v 3021 |
. . . . . . 7
| |
| 29 | 20, 28 | nfsbcw 3132 |
. . . . . 6
|
| 30 | nfcv 2349 |
. . . . . 6
| |
| 31 | 29, 30 | nfrabw 2688 |
. . . . 5
|
| 32 | 3, 8, 9, 10, 11, 14, 19, 24, 20, 17, 27, 31 | ovmpodxf 6083 |
. . . 4
|
| 33 | 32 | eleq2d 2276 |
. . 3
|
| 34 | df-3an 983 |
. . . . 5
| |
| 35 | 34 | simplbi2com 1465 |
. . . 4
|
| 36 | elrabi 2930 |
. . . 4
| |
| 37 | 35, 36 | syl11 31 |
. . 3
|
| 38 | 33, 37 | sylbid 150 |
. 2
|
| 39 | 2, 38 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |