ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmporab Unicode version

Theorem elovmporab 6158
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elovmporab.o  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } )
elovmporab.v  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  M  e.  _V )
Assertion
Ref Expression
elovmporab  |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) )
Distinct variable groups:    x, M, y, z    x, X, y, z    x, Y, y, z    z, Z
Allowed substitution hints:    ph( x, y, z)    O( x, y, z)    Z( x, y)

Proof of Theorem elovmporab
StepHypRef Expression
1 elovmporab.o . . 3  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } )
21elmpocl 6153 . 2  |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
31a1i 9 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } ) )
4 sbceq1a 3012 . . . . . . . 8  |-  ( y  =  Y  ->  ( ph 
<-> 
[. Y  /  y ]. ph ) )
5 sbceq1a 3012 . . . . . . . 8  |-  ( x  =  X  ->  ( [. Y  /  y ]. ph  <->  [. X  /  x ]. [. Y  /  y ]. ph ) )
64, 5sylan9bbr 463 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  [. X  /  x ]. [. Y  / 
y ]. ph ) )
76adantl 277 . . . . . 6  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  ( x  =  X  /\  y  =  Y ) )  ->  ( ph 
<-> 
[. X  /  x ]. [. Y  /  y ]. ph ) )
87rabbidv 2762 . . . . 5  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  ( x  =  X  /\  y  =  Y ) )  ->  { z  e.  M  |  ph }  =  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
)
9 eqidd 2207 . . . . 5  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  x  =  X
)  ->  _V  =  _V )
10 simpl 109 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  X  e.  _V )
11 simpr 110 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  Y  e.  _V )
12 elovmporab.v . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  M  e.  _V )
13 rabexg 4194 . . . . . 6  |-  ( M  e.  _V  ->  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
1412, 13syl 14 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
15 nfcv 2349 . . . . . . 7  |-  F/_ x X
1615nfel1 2360 . . . . . 6  |-  F/ x  X  e.  _V
17 nfcv 2349 . . . . . . 7  |-  F/_ x Y
1817nfel1 2360 . . . . . 6  |-  F/ x  Y  e.  _V
1916, 18nfan 1589 . . . . 5  |-  F/ x
( X  e.  _V  /\  Y  e.  _V )
20 nfcv 2349 . . . . . . 7  |-  F/_ y X
2120nfel1 2360 . . . . . 6  |-  F/ y  X  e.  _V
22 nfcv 2349 . . . . . . 7  |-  F/_ y Y
2322nfel1 2360 . . . . . 6  |-  F/ y  Y  e.  _V
2421, 23nfan 1589 . . . . 5  |-  F/ y ( X  e.  _V  /\  Y  e.  _V )
25 nfsbc1v 3021 . . . . . 6  |-  F/ x [. X  /  x ]. [. Y  /  y ]. ph
26 nfcv 2349 . . . . . 6  |-  F/_ x M
2725, 26nfrabw 2688 . . . . 5  |-  F/_ x { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
28 nfsbc1v 3021 . . . . . . 7  |-  F/ y
[. Y  /  y ]. ph
2920, 28nfsbcw 3132 . . . . . 6  |-  F/ y
[. X  /  x ]. [. Y  /  y ]. ph
30 nfcv 2349 . . . . . 6  |-  F/_ y M
3129, 30nfrabw 2688 . . . . 5  |-  F/_ y { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
323, 8, 9, 10, 11, 14, 19, 24, 20, 17, 27, 31ovmpodxf 6083 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X O Y )  =  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
)
3332eleq2d 2276 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  ( X O Y )  <-> 
Z  e.  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
) )
34 df-3an 983 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M )  <->  ( ( X  e.  _V  /\  Y  e.  _V )  /\  Z  e.  M ) )
3534simplbi2com 1465 . . . 4  |-  ( Z  e.  M  ->  (
( X  e.  _V  /\  Y  e.  _V )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M )
) )
36 elrabi 2930 . . . 4  |-  ( Z  e.  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  ->  Z  e.  M )
3735, 36syl11 31 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  {
z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) ) )
3833, 37sylbid 150 . 2  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  ( X O Y )  ->  ( X  e. 
_V  /\  Y  e.  _V  /\  Z  e.  M
) ) )
392, 38mpcom 36 1  |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773   [.wsbc 3002  (class class class)co 5956    e. cmpo 5958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-setind 4592
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator