| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elovmporab | Unicode version | ||
| Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| elovmporab.o |
|
| elovmporab.v |
|
| Ref | Expression |
|---|---|
| elovmporab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmporab.o |
. . 3
| |
| 2 | 1 | elmpocl 6119 |
. 2
|
| 3 | 1 | a1i 9 |
. . . . 5
|
| 4 | sbceq1a 2999 |
. . . . . . . 8
| |
| 5 | sbceq1a 2999 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylan9bbr 463 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | 7 | rabbidv 2752 |
. . . . 5
|
| 9 | eqidd 2197 |
. . . . 5
| |
| 10 | simpl 109 |
. . . . 5
| |
| 11 | simpr 110 |
. . . . 5
| |
| 12 | elovmporab.v |
. . . . . 6
| |
| 13 | rabexg 4177 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | nfcv 2339 |
. . . . . . 7
| |
| 16 | 15 | nfel1 2350 |
. . . . . 6
|
| 17 | nfcv 2339 |
. . . . . . 7
| |
| 18 | 17 | nfel1 2350 |
. . . . . 6
|
| 19 | 16, 18 | nfan 1579 |
. . . . 5
|
| 20 | nfcv 2339 |
. . . . . . 7
| |
| 21 | 20 | nfel1 2350 |
. . . . . 6
|
| 22 | nfcv 2339 |
. . . . . . 7
| |
| 23 | 22 | nfel1 2350 |
. . . . . 6
|
| 24 | 21, 23 | nfan 1579 |
. . . . 5
|
| 25 | nfsbc1v 3008 |
. . . . . 6
| |
| 26 | nfcv 2339 |
. . . . . 6
| |
| 27 | 25, 26 | nfrabw 2678 |
. . . . 5
|
| 28 | nfsbc1v 3008 |
. . . . . . 7
| |
| 29 | 20, 28 | nfsbcw 3119 |
. . . . . 6
|
| 30 | nfcv 2339 |
. . . . . 6
| |
| 31 | 29, 30 | nfrabw 2678 |
. . . . 5
|
| 32 | 3, 8, 9, 10, 11, 14, 19, 24, 20, 17, 27, 31 | ovmpodxf 6049 |
. . . 4
|
| 33 | 32 | eleq2d 2266 |
. . 3
|
| 34 | df-3an 982 |
. . . . 5
| |
| 35 | 34 | simplbi2com 1455 |
. . . 4
|
| 36 | elrabi 2917 |
. . . 4
| |
| 37 | 35, 36 | syl11 31 |
. . 3
|
| 38 | 33, 37 | sylbid 150 |
. 2
|
| 39 | 2, 38 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |