| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 |
|
| sseqtrri.2 |
|
| Ref | Expression |
|---|---|
| sseqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 |
. 2
| |
| 2 | sseqtrri.2 |
. . 3
| |
| 3 | 2 | eqcomi 2208 |
. 2
|
| 4 | 1, 3 | sseqtri 3226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqimss2i 3249 difdif2ss 3429 snsspr1 3780 snsspr2 3781 snsstp1 3782 snsstp2 3783 snsstp3 3784 prsstp12 3785 prsstp13 3786 prsstp23 3787 iunxdif2 3975 pwpwssunieq 4015 sssucid 4460 opabssxp 4747 dmresi 5011 cnvimass 5042 ssrnres 5122 cnvcnv 5132 cnvssrndm 5201 dmmpossx 6275 tfrcllemssrecs 6428 sucinc 6521 mapex 6731 exmidpw 6987 exmidpweq 6988 casefun 7169 djufun 7188 pw1ne1 7323 ressxr 8098 ltrelxr 8115 nnssnn0 9280 un0addcl 9310 un0mulcl 9311 nn0ssxnn0 9343 fzssnn 10172 fzossnn0 10280 isumclim3 11653 isprm3 12359 phimullem 12466 tgvalex 13013 eqgfval 13476 cnfldbas 14240 mpocnfldadd 14241 mpocnfldmul 14243 cnfldcj 14245 cnfldtset 14246 cnfldle 14247 cnfldds 14248 cnrest2 14626 qtopbasss 14911 tgqioo 14945 |
| Copyright terms: Public domain | W3C validator |