ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrri Unicode version

Theorem sseqtrri 3205
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
sseqtrri.1  |-  A  C_  B
sseqtrri.2  |-  C  =  B
Assertion
Ref Expression
sseqtrri  |-  A  C_  C

Proof of Theorem sseqtrri
StepHypRef Expression
1 sseqtrri.1 . 2  |-  A  C_  B
2 sseqtrri.2 . . 3  |-  C  =  B
32eqcomi 2193 . 2  |-  B  =  C
41, 3sseqtri 3204 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1364    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  eqimss2i  3227  difdif2ss  3407  snsspr1  3755  snsspr2  3756  snsstp1  3757  snsstp2  3758  snsstp3  3759  prsstp12  3760  prsstp13  3761  prsstp23  3762  iunxdif2  3950  pwpwssunieq  3990  sssucid  4430  opabssxp  4715  dmresi  4977  cnvimass  5006  ssrnres  5086  cnvcnv  5096  cnvssrndm  5165  dmmpossx  6219  tfrcllemssrecs  6372  sucinc  6465  mapex  6675  exmidpw  6931  exmidpweq  6932  casefun  7109  djufun  7128  pw1ne1  7253  ressxr  8026  ltrelxr  8043  nnssnn0  9204  un0addcl  9234  un0mulcl  9235  nn0ssxnn0  9267  fzssnn  10093  fzossnn0  10200  isumclim3  11458  isprm3  12145  phimullem  12252  tgvalex  12761  eqgfval  13154  cnfldbas  13861  cnfldadd  13862  cnfldmul  13863  cnfldcj  13864  cnrest2  14173  qtopbasss  14458  tgqioo  14484
  Copyright terms: Public domain W3C validator