| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 |
|
| sseqtrri.2 |
|
| Ref | Expression |
|---|---|
| sseqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 |
. 2
| |
| 2 | sseqtrri.2 |
. . 3
| |
| 3 | 2 | eqcomi 2233 |
. 2
|
| 4 | 1, 3 | sseqtri 3258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqimss2i 3281 difdif2ss 3461 snsspr1 3815 snsspr2 3816 snsstp1 3817 snsstp2 3818 snsstp3 3819 prsstp12 3820 prsstp13 3821 prsstp23 3822 iunxdif2 4013 pwpwssunieq 4053 sssucid 4505 opabssxp 4792 dmresi 5059 cnvimass 5090 ssrnres 5170 cnvcnv 5180 cnvssrndm 5249 dmmpossx 6343 tfrcllemssrecs 6496 sucinc 6589 mapex 6799 exmidpw 7066 exmidpweq 7067 casefun 7248 djufun 7267 pw1ne1 7410 ressxr 8186 ltrelxr 8203 nnssnn0 9368 un0addcl 9398 un0mulcl 9399 nn0ssxnn0 9431 fzssnn 10260 fzossnn0 10369 isumclim3 11929 isprm3 12635 phimullem 12742 tgvalex 13291 eqgfval 13754 cnfldbas 14518 mpocnfldadd 14519 mpocnfldmul 14521 cnfldcj 14523 cnfldtset 14524 cnfldle 14525 cnfldds 14526 cnrest2 14904 qtopbasss 15189 tgqioo 15223 |
| Copyright terms: Public domain | W3C validator |