| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 |
|
| sseqtrri.2 |
|
| Ref | Expression |
|---|---|
| sseqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 |
. 2
| |
| 2 | sseqtrri.2 |
. . 3
| |
| 3 | 2 | eqcomi 2208 |
. 2
|
| 4 | 1, 3 | sseqtri 3226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqimss2i 3249 difdif2ss 3429 snsspr1 3780 snsspr2 3781 snsstp1 3782 snsstp2 3783 snsstp3 3784 prsstp12 3785 prsstp13 3786 prsstp23 3787 iunxdif2 3975 pwpwssunieq 4015 sssucid 4461 opabssxp 4748 dmresi 5013 cnvimass 5044 ssrnres 5124 cnvcnv 5134 cnvssrndm 5203 dmmpossx 6284 tfrcllemssrecs 6437 sucinc 6530 mapex 6740 exmidpw 7004 exmidpweq 7005 casefun 7186 djufun 7205 pw1ne1 7340 ressxr 8115 ltrelxr 8132 nnssnn0 9297 un0addcl 9327 un0mulcl 9328 nn0ssxnn0 9360 fzssnn 10189 fzossnn0 10297 isumclim3 11676 isprm3 12382 phimullem 12489 tgvalex 13037 eqgfval 13500 cnfldbas 14264 mpocnfldadd 14265 mpocnfldmul 14267 cnfldcj 14269 cnfldtset 14270 cnfldle 14271 cnfldds 14272 cnrest2 14650 qtopbasss 14935 tgqioo 14969 |
| Copyright terms: Public domain | W3C validator |