| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 |
|
| sseqtrri.2 |
|
| Ref | Expression |
|---|---|
| sseqtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 |
. 2
| |
| 2 | sseqtrri.2 |
. . 3
| |
| 3 | 2 | eqcomi 2210 |
. 2
|
| 4 | 1, 3 | sseqtri 3231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqimss2i 3254 difdif2ss 3434 snsspr1 3787 snsspr2 3788 snsstp1 3789 snsstp2 3790 snsstp3 3791 prsstp12 3792 prsstp13 3793 prsstp23 3794 iunxdif2 3982 pwpwssunieq 4022 sssucid 4470 opabssxp 4757 dmresi 5023 cnvimass 5054 ssrnres 5134 cnvcnv 5144 cnvssrndm 5213 dmmpossx 6298 tfrcllemssrecs 6451 sucinc 6544 mapex 6754 exmidpw 7020 exmidpweq 7021 casefun 7202 djufun 7221 pw1ne1 7360 ressxr 8136 ltrelxr 8153 nnssnn0 9318 un0addcl 9348 un0mulcl 9349 nn0ssxnn0 9381 fzssnn 10210 fzossnn0 10319 isumclim3 11809 isprm3 12515 phimullem 12622 tgvalex 13170 eqgfval 13633 cnfldbas 14397 mpocnfldadd 14398 mpocnfldmul 14400 cnfldcj 14402 cnfldtset 14403 cnfldle 14404 cnfldds 14405 cnrest2 14783 qtopbasss 15068 tgqioo 15102 |
| Copyright terms: Public domain | W3C validator |