![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 |
![]() ![]() ![]() ![]() |
sseqtrri.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseqtrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseqtrri.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2193 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | sseqtri 3204 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: eqimss2i 3227 difdif2ss 3407 snsspr1 3755 snsspr2 3756 snsstp1 3757 snsstp2 3758 snsstp3 3759 prsstp12 3760 prsstp13 3761 prsstp23 3762 iunxdif2 3950 pwpwssunieq 3990 sssucid 4430 opabssxp 4715 dmresi 4977 cnvimass 5006 ssrnres 5086 cnvcnv 5096 cnvssrndm 5165 dmmpossx 6219 tfrcllemssrecs 6372 sucinc 6465 mapex 6675 exmidpw 6931 exmidpweq 6932 casefun 7109 djufun 7128 pw1ne1 7253 ressxr 8026 ltrelxr 8043 nnssnn0 9204 un0addcl 9234 un0mulcl 9235 nn0ssxnn0 9267 fzssnn 10093 fzossnn0 10200 isumclim3 11458 isprm3 12145 phimullem 12252 tgvalex 12761 eqgfval 13154 cnfldbas 13861 cnfldadd 13862 cnfldmul 13863 cnfldcj 13864 cnrest2 14173 qtopbasss 14458 tgqioo 14484 |
Copyright terms: Public domain | W3C validator |